12 research outputs found

    A comparative-advantage approach to government debt maturity’,

    Get PDF
    Abstract We study optimal government debt maturity in a model where investors derive monetary services from holding riskless short-term securities. In a setting where the government is the only issuer of such riskless paper, it trades off the monetary premium associated with short-term debt against the refinancing risk implied by the need to roll over its debt more often. We then extend the model to allow private financial intermediaries to compete with the government in the provision of short-term, money-like claims. We argue that if there are negative externalities associated with private money creation, the government should tilt its issuance more towards short maturities. The idea is that the government may have a comparative advantage relative to the private sector in bearing refinancing risk, and hence should aim to partially crowd out the private sector's use of short-term debt

    Functions Beyond Multiple Polylogarithms for Precision Collider Physics

    No full text
    Feynman diagrams constitute one of the essential ingredients for making precision predictions for collider experiments. Yet, while the simplest Feynman diagrams can be evaluated in terms of multiple polylogarithms -- whose properties as special functions are well understood -- more complex diagrams often involve integrals over complicated algebraic manifolds. Such diagrams already contribute at NNLO to the self-energy of the electron, ttˉt \bar{t} production, γγ\gamma \gamma production, and Higgs decay, and appear at two loops in the planar limit of maximally supersymmetric Yang-Mills theory. This makes the study of these more complicated types of integrals of phenomenological as well as conceptual importance. In this white paper contribution to the Snowmass community planning exercise, we provide an overview of the state of research on Feynman diagrams that involve special functions beyond multiple polylogarithms, and highlight a number of research directions that constitute essential avenues for future investigation

    TheQCD/SM working group : summary report

    No full text
    Among the many physics processes at TeV hadron colliders, we look most eagerly for those that display signs of the Higgs boson or of new physics. We do so however amid an abundance of processes that proceed via Standard Model (SM) and in particular Quantum Chromodynamics (QCD) interactions, and that are interesting in their own right. Good knowledge of these processes is required to help us distinguish the new from the known. Their theoretical and experimental study teaches us at the same time more about QCD/SM dynamics, and thereby enables us to further improve such distinctions. This is important because it is becoming increasingly clear that the success of finding and exploring Higgs boson physics or other New Physics at the Tevatron and LHC will depend significantly on precise understanding of QCD/SM effects for many observables. To improve predictions and deepen the study of QCD/SM signals and backgrounds was therefore the ambition for our QCD/SM working group at this Les Houches workshop. Members of the working group made significant progress towards this on a number of fronts. A variety of tools were further developed, from methods to perform higher order perturbative calculations or various types of resummation, to improvements in the modeling of underlying events and parton showers. Furthermore, various precise studies of important specific processes were conducted. A significant part of the activities in Les Houches revolved around Monte Carlo simulation of collision events. A number of contributions in this report reflect the progress made in this area. At present a large number of Monte Carlo programs exist, each written with a different purpose and employing different techniques. Discussions in Les Houches revealed the need for an accessible primer on Monte Carlo programs, featuring a listing of various codes, each with a short description, but also providing a low-level explanation of the underlying methods. This primer has now been compiled and a synopsis of it is included here as the first contribution to this report. This report reflects the hard and creative work by the many contributors which took place in the working group. After the MC guide description, the next contributions report on progress in describing multiple interactions, important for the LHC, and underlying events. An announcement of a Monte Carlo database, under construction, is followed by a number of contributions improving parton shower descriptions. Subsequently, a large number of contributions address resummations in various forms, after which follow studies of QCD effects in pion pair, top quark pair and photon pair plus jet production. After a study of electroweak corrections to hadronic precision observables, the report ends by presenting recent progress in methods to compute finite order corrections at one-loop with many legs, and at two-loop

    Bibliographie

    No full text

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics
    corecore