813 research outputs found

    Timing, Duration, and Pathways of Harlequin Duck Migration to Pacific Molting and Wintering Areas

    Get PDF
    The core breeding range for Harlequin Ducks (Histrionicus histrionicus) in western North America extends from Alaska, and south through the Yukon, Northwest Territories, and British Columbia. Smaller breeding populations exist in southwestern Alberta, Washington, Oregon, Idaho, Wyoming, and Montana. Each state and province in these areas has identified the Harlequin Duck as a species of conservation priority, given its small and isolated populations, its specific nesting requirements, and changes in abundance or distribution. Conservation objectives for all areas have identified the importance of mapping migration routes that connect breeding sites to Pacific coast molting and wintering locations, as well as determining migration timing, duration, habitat use, and stopover sites. In spring 2016, we captured Harlequin Duck pairs on breeding streams and surgically implanted satellite transmitters in the males and attached geolocators to the leg bands of females. We marked 18 harlequin pairs (Alberta = 10 (minus one female), Montana = 5, Wyoming = 2, Washington = 1). Migration initiation dates varied by breeding areas and occurred from June 3 to July 10. Male migration lasted between 1-17 days and stopovers occurred approximately half-way to the coast and included rivers, mountain streams, and lakes. They arrived at their molting areas between June 5-July 24 and these areas ranged from southeast Alaska to northwestern Washington. The majority (71%) of harlequins departed molt locations to differing winter locations. Efforts will be made to retrieve the geolocators from females in spring 2017 to compare locations between males and females from different devices

    Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor.

    Get PDF
    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m-2) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m-2). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m-2. The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station).The authors are grateful for funding provided by the UK Engineering and Physical Sciences Research Council (EPSRC) (P.B., A.G.S. and C.J. Howe), EnAlgae (http://www.enalgae.eu/, INTERREG IVB NWE) (P.B. and C.J. Howe), the Royal Society URF (C.J. Harrison), the Gatsby Charitable Foundation (Fellowship GAT2962) (C.J. Harrison), the Leverhulme Trust (P.B. and C.J. Howe), the Shuttleworth Foundation (P.B.) and the Department of Science and Technology and the National Research Foundation of South Africa through the South African Research Chair Initiative Chair in Bioprocess Engineering (UID 64778) (S.T.L.H. and D.M.R.I.).This is the final version of the article. It first appeared from the Royal Society Publishing via https://doi.org/10.1098/rsos.16024

    Association Between Chronic Hepatitis C Virus Infection and Myocardial Infarction Among People Living With HIV in the United States.

    Get PDF
    Hepatitis C virus (HCV) infection is common among people living with human immunodeficiency virus (PLWH). Extrahepatic manifestations of HCV, including myocardial infarction (MI), are a topic of active research. MI is classified into types, predominantly atheroembolic type 1 MI (T1MI) and supply-demand mismatch type 2 MI (T2MI). We examined the association between HCV and MI among patients in the Centers for AIDS Research (CFAR) Network of Integrated Clinical Systems, a US multicenter clinical cohort of PLWH. MIs were centrally adjudicated and categorized by type using the Third Universal Definition of Myocardial Infarction. We estimated the association between chronic HCV (RNA+) and time to MI while adjusting for demographic characteristics, cardiovascular risk factors, clinical characteristics, and history of injecting drug use. Among 23,407 PLWH aged ≥18 years, there were 336 T1MIs and 330 T2MIs during a median of 4.7 years of follow-up between 1998 and 2016. HCV was associated with a 46% greater risk of T2MI (adjusted hazard ratio (aHR) = 1.46, 95% confidence interval (CI): 1.09, 1.97) but not T1MI (aHR = 0.87, 95% CI: 0.58, 1.29). In an exploratory cause-specific analysis of T2MI, HCV was associated with a 2-fold greater risk of T2MI attributed to sepsis (aHR = 2.01, 95% CI: 1.25, 3.24). Extrahepatic manifestations of HCV in this high-risk population are an important area for continued research

    Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lassa fever is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. Treatment of acute Lassa fever infections has successfully utilized intravenous administration of ribavirin, a nucleotide analogue drug, but this is not an approved use; efficacy of oral administration has not been demonstrated. To date, several potential new vaccine platforms have been explored, but none have progressed toward clinical trials and commercialization. Therefore, the development of a robust vaccine platform that could be generated in sufficient quantities and at a low cost per dose could herald a subcontinent-wide vaccination program. This would move Lassa endemic areas toward the control and reduction of major outbreaks and endemic infections. To this end, we have employed efficient mammalian expression systems to generate a Lassa virus (LASV)-like particle (VLP)-based modular vaccine platform.</p> <p>Results</p> <p>A mammalian expression system that generated large quantities of LASV VLP in human cells at small scale settings was developed. These VLP contained the major immunological determinants of the virus: glycoprotein complex, nucleoprotein, and Z matrix protein, with known post-translational modifications. The viral proteins packaged into LASV VLP were characterized, including glycosylation profiles of glycoprotein subunits GP1 and GP2, and structural compartmentalization of each polypeptide. The host cell protein component of LASV VLP was also partially analyzed, namely glycoprotein incorporation, though the identity of these proteins remain unknown. All combinations of LASV Z, GPC, and NP proteins that generated VLP did not incorporate host cell ribosomes, a known component of native arenaviral particles, despite detection of small RNA species packaged into pseudoparticles. Although VLP did not contain the same host cell components as the native virion, electron microscopy analysis demonstrated that LASV VLP appeared structurally similar to native virions, with pleiomorphic distribution in size and shape. LASV VLP that displayed GPC or GPC+NP were immunogenic in mice, and generated a significant IgG response to individual viral proteins over the course of three immunizations, in the absence of adjuvants. Furthermore, sera from convalescent Lassa fever patients recognized VLP in ELISA format, thus affirming the presence of native epitopes displayed by the recombinant pseudoparticles.</p> <p>Conclusions</p> <p>These results established that modular LASV VLP can be generated displaying high levels of immunogenic viral proteins, and that small laboratory scale mammalian expression systems are capable of producing multi-milligram quantities of pseudoparticles. These VLP are structurally and morphologically similar to native LASV virions, but lack replicative functions, and thus can be safely generated in low biosafety level settings. LASV VLP were immunogenic in mice in the absence of adjuvants, with mature IgG responses developing within a few weeks after the first immunization. These studies highlight the relevance of a VLP platform for designing an optimal vaccine candidate against Lassa hemorrhagic fever, and warrant further investigation in lethal challenge animal models to establish their protective potential.</p

    Complete genome sequence of Meiothermus silvanus type strain (VI-R2).

    Get PDF
    Meiothermus silvanus (Tenreiro et al. 1995) Nobre et al. 1996 belongs to a thermophilic genus whose members share relatively low degrees of 16S rRNA gene sequence similarity. Meiothermus constitutes an evolutionary lineage separate from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. M. silvanus is of special interest as it causes colored biofilms in the paper making industry and may thus be of economic importance as a biofouler. This is the second completed genome sequence of a member of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,721,669 bp long genome with its 3,667 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project

    Complete genome sequence of Planctomyces limnophilus type strain (Mü 290).

    Get PDF
    Planctomyces limnophilus Hirsch and Müller 1986 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall which is stabilized by a proteinaceous layer rather than a peptidoglycan layer. Besides Pirellula staleyi, this is the second completed genome sequence of the family Planctomycetaceae. P. limnophilus is of interest because it differs from Pirellula by the presence of a stalk and its structure of fibril bundles, its cell shape and size, the formation of multicellular rosettes, low salt tolerance and red pigmented colonies. The 5,460,085 bp long genome with its 4,304 protein-coding and 66 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project
    corecore