3,329 research outputs found

    Magnetic Properties of Precession Modes Built on High-K Multi-quasiparticle States in ^{178}W

    Full text link
    We present an example that shows that the random phase approximation performed on high-K multi-quasiparticle configurations leads to a rotor picture by calculating excitation energies and magnetic properties of ^{178}W. Then we deduce the effective g_R of the high-K rotors and compare it with that of the low-K one.Comment: 6 pages, 3 figures, Prog. Theor. Phys., accepte

    Wobbling motion in triaxial superdeformed nuclei

    Get PDF
    We discuss some characteristic features of the wobbling motion excited on the triaxial superdeformed Lu nucleus. We show how these features are connected to the moments of inertia microscopically calculated by means of the quasiparticle RPA in the rotating frame.Comment: 6 pages, 7 figures, Proc. 6th China-Japan Joint Nuclear Physics Symposium, Shanghai, China, 2006, Ed. Y.-G. Ma and A.Ozaw

    High-K Precession modes: Axially symmetric limit of wobbling motion

    Full text link
    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase-approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178^{178}W; the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives a new insight to understand the wobbling motion in the triaxial superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the first upload, so it is corrected

    Nuclear Wobbling Motion and Electromagnetic Transitions

    Full text link
    The nuclear wobbling motion is studied from a microscopic viewpoint. It is shown that the expressions not only of the excitation energy but also of the electromagnetic transition rate in the microscopic RPA framework can be cast into the corresponding forms of the macroscopic rotor model. Criteria to identify the rotational band associated with the wobbling motion are given, based on which examples of realistic calculations are investigated and some theoretical predictions are presented.Comment: 39 pages, plain TeX, figures not included, available via conventional mai

    The Three Site Model at One-Loop

    Get PDF
    In this paper we compute the one-loop chiral logarithmic corrections to all O(p^4) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral- and gauge-fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one-loop divergences in an SU(2) x U(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodial symmetry.Comment: 40 pages, nine included eps figures. Minor corrections mad
    • 

    corecore