4,201 research outputs found
Analysis of Quark Mixing Using Binary Tetrahedral Flavor Symmetry
Using the binary tetrahedral group , the three angles and phase of the
quark CKM mixing matrix are pursued by symmetry-breaking which involves
-doublet VEVs and the Chen-Mahanthappa CP-violation mechanism. The
NMRTM, Next-to-Minimal-Renormalizable -T-Model is described, and
its one parameter comparison to experimental data is explored.Comment: 14 pages latex. Two .eps figures include
Two-phonon -vibrational states in rotating triaxial odd- nuclei
Distribution of the two phonon vibrational collectivity in the
rotating triaxial odd- nucleus, Nb, that is one of the three
nuclides for which experimental data were reported recently, is calculated in
the framework of the particle vibration coupling model based on the cranked
shell model plus random phase approximation. This framework was previously
utilized for analyses of the zero and one phonon bands in other mass region and
is applied to the two phonon band for the first time. In the present
calculation, three sequences of two phonon bands share collectivity almost
equally at finite rotation whereas the state is the purest at zero
rotation.Comment: 15 pages, 3 figures, accepted for publication in Physical Review
Notes on projective structures and Kleinian groups
Throughout this paper, C will denote the complex plane, C ̂ = C ∪ {∞} the number sphere, and D = {z: |z | < 1} ⊂ C the unit disk. We use PSL(2,C) = SL(2,C) / ± id for the group of Möbius transformations of Ĉ. With Γ an arbitrary Fuchsian group, possibly having elliptic elements, let
Pionic BEC--BCS crossover at finite isospin chemical potential
We study the character change of the pionic condensation at finite isospin
chemical potential \mu_\mathrm{I} by adopting the linear sigma model as a
non-local interaction between quarks. At low |\mu_\mathrm{I}| the condensation
is purely bosonic, then the Cooper pairing around the Fermi surface grows
gradually as |\mu_\mathrm{I}| increases. This q-\bar q pairing is weakly
coupled in comparison with the case of the q-q pairing that leads to color
superconductivity.Comment: 17 pages, 3 figures, typos in eq.(6) and refs.[37] and [41] are
corrected, published in Phys. Rev.
Holographic Techni-dilaton
Techni-dilaton, a pseudo-Nambu-Goldstone boson of scale symmetry, was
predicted long ago in the Scale-invariant/Walking/Conformal Technicolor
(SWC-TC) as a remnant of the (approximate) scale symmetry associated with the
conformal fixed point, based on the conformal gauge dynamics of ladder
Schwinger-Dyson (SD) equation with non-running coupling. We study the
techni-dilaton as a flavor-singlet bound state of techni-fermions by including
the techni-gluon condensate (tGC) effect into the previous (bottom-up)
holographic approach to the SWC-TC, a deformation of the holographic QCD with
by large anomalous dimension . With
including a bulk scalar field corresponding to the gluon condensate, we first
improve the Operator Product Expansion of the current correlators so as to
reproduce gluonic term both in QCD and SWC-TC. We find in QCD about
(negative) contribution of gluon condensate to the meson mass. We
also calculate the oblique electroweak -parameter in the presence of the
effect of the tGC and find that for the fixed value of the tGC effects
dramatically reduce the flavor-singlet scalar (techni-dilaton) mass (in the unit of ), while the vector and axial-vector masses
and are rather insensitive to the tGC, where is the
decay constant of the techni-pion. If we use the range of values of tGC implied
by the ladder SD analysis of the non-perturbative scale anomaly in the large
QCD near the conformal window, the phenomenological constraint predicts the techni-dilaton mass GeV which is within
reach of LHC discovery.Comment: 28 pages, 11 eps files, typos corrected, references added, Fig.1
corrected, some discussions added, to be published in PR
High-K Precession modes: Axially symmetric limit of wobbling motion
The rotational band built on the high-K multi-quasiparticle state can be
interpreted as a multi-phonon band of the precession mode, which represents the
precessional rotation about the axis perpendicular to the direction of the
intrinsic angular momentum. By using the axially symmetric limit of the
random-phase-approximation (RPA) formalism developed for the nuclear wobbling
motion, we study the properties of the precession modes in W; the
excitation energies, B(E2) and B(M1) values. We show that the excitations of
such a specific type of rotation can be well described by the RPA formalism,
which gives a new insight to understand the wobbling motion in the triaxial
superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the
first upload, so it is corrected
Weyl Card Diagrams and New S-brane Solutions of Gravity
We construct a new card diagram which accurately draws Weyl spacetimes and
represents their global spacetime structure, singularities, horizons and null
infinity. As examples we systematically discuss properties of a variety of
solutions including black holes as well as recent and new time-dependent
gravity solutions which fall under the S-brane class. The new time-dependent
Weyl solutions include S-dihole universes, infinite arrays and complexified
multi-rod solutions. Among the interesting features of these new solutions is
that they have near horizon scaling limits and describe the decay of unstable
objects.Comment: 78 pages, 32 figures. v2 added referenc
A Solution for Little Hierarchy Problem and b --> s gamma
We show that all the parameters which destabilize the weak scale can be taken
around the weak scale in the MSSM without conflicting with the SM Higgs mass
bound set by LEP experiment. The essential point is that if the lightest
CP-even Higgs h in the MSSM has only a small coupling to Z boson, g_{ZZh}, LEP
cannot generate the Higgs sufficiently. In the scenario, the SM Higgs mass
bound constrains the mass of the heaviest CP-even Higgs H which has the SM like
g_{ZZH} coupling. However, it is easier to make the heaviest Higgs heavy by the
effect of off-diagonal elements of the mass matrix of the CP-even Higgs because
the larger eigenvalue of 2 times 2 matrix becomes larger by introducing
off-diagonal elements. Thus, the smaller stop masses can be consistent with the
LEP constraints. Moreover, the two excesses observed at LEP Higgs search can
naturally be explained as the signals of the MSSM Higgs h and H in this
scenario. One of the most interesting results in the scenario is that all the
Higgs in the MSSM have the weak scale masses. For example, the charged Higgs
mass should be around 130 GeV. This looks inconsistent with the lower bound
obtained by the b --> s gamma process as m_{H^\pm}>350GeV. However, we show
that the amplitude induced by the charged Higgs can naturally be compensated by
that of the chargino if we take the mass parameters by which the little
hierarchy problem can be solved. The point is that the both amplitudes have the
same order of magnitudes when all the fields in the both loops have the same
order of masses.Comment: 14 pages, 5 figures, input parameter slightly changed, figures
replaced, references correcte
- …