4,201 research outputs found

    Analysis of Quark Mixing Using Binary Tetrahedral Flavor Symmetry

    Get PDF
    Using the binary tetrahedral group TT^{'}, the three angles and phase of the quark CKM mixing matrix are pursued by symmetry-breaking which involves TT^{'}-doublet VEVs and the Chen-Mahanthappa CP-violation mechanism. The NMRT^{'}M, Next-to-Minimal-Renormalizable -T^{'}-Model is described, and its one parameter comparison to experimental data is explored.Comment: 14 pages latex. Two .eps figures include

    Two-phonon γ\gamma-vibrational states in rotating triaxial odd-AA nuclei

    Full text link
    Distribution of the two phonon γ\gamma vibrational collectivity in the rotating triaxial odd-AA nucleus, 103^{103}Nb, that is one of the three nuclides for which experimental data were reported recently, is calculated in the framework of the particle vibration coupling model based on the cranked shell model plus random phase approximation. This framework was previously utilized for analyses of the zero and one phonon bands in other mass region and is applied to the two phonon band for the first time. In the present calculation, three sequences of two phonon bands share collectivity almost equally at finite rotation whereas the K=Ω+4K=\Omega+4 state is the purest at zero rotation.Comment: 15 pages, 3 figures, accepted for publication in Physical Review

    Notes on projective structures and Kleinian groups

    Get PDF
    Throughout this paper, C will denote the complex plane, C ̂ = C ∪ {∞} the number sphere, and D = {z: |z | < 1} ⊂ C the unit disk. We use PSL(2,C) = SL(2,C) / ± id for the group of Möbius transformations of Ĉ. With Γ an arbitrary Fuchsian group, possibly having elliptic elements, let

    Pionic BEC--BCS crossover at finite isospin chemical potential

    Full text link
    We study the character change of the pionic condensation at finite isospin chemical potential \mu_\mathrm{I} by adopting the linear sigma model as a non-local interaction between quarks. At low |\mu_\mathrm{I}| the condensation is purely bosonic, then the Cooper pairing around the Fermi surface grows gradually as |\mu_\mathrm{I}| increases. This q-\bar q pairing is weakly coupled in comparison with the case of the q-q pairing that leads to color superconductivity.Comment: 17 pages, 3 figures, typos in eq.(6) and refs.[37] and [41] are corrected, published in Phys. Rev.

    Holographic Techni-dilaton

    Full text link
    Techni-dilaton, a pseudo-Nambu-Goldstone boson of scale symmetry, was predicted long ago in the Scale-invariant/Walking/Conformal Technicolor (SWC-TC) as a remnant of the (approximate) scale symmetry associated with the conformal fixed point, based on the conformal gauge dynamics of ladder Schwinger-Dyson (SD) equation with non-running coupling. We study the techni-dilaton as a flavor-singlet bound state of techni-fermions by including the techni-gluon condensate (tGC) effect into the previous (bottom-up) holographic approach to the SWC-TC, a deformation of the holographic QCD with γm0\gamma_m \simeq 0 by large anomalous dimension γm1\gamma_m \simeq 1. With including a bulk scalar field corresponding to the gluon condensate, we first improve the Operator Product Expansion of the current correlators so as to reproduce gluonic 1/Q41/Q^4 term both in QCD and SWC-TC. We find in QCD about 10%10\% (negative) contribution of gluon condensate to the ρ\rho meson mass. We also calculate the oblique electroweak SS-parameter in the presence of the effect of the tGC and find that for the fixed value of SS the tGC effects dramatically reduce the flavor-singlet scalar (techni-dilaton) mass MTDM_{\rm TD} (in the unit of FπF_\pi), while the vector and axial-vector masses MρM_\rho and Ma1M_{a_1} are rather insensitive to the tGC, where FπF_\pi is the decay constant of the techni-pion. If we use the range of values of tGC implied by the ladder SD analysis of the non-perturbative scale anomaly in the large NfN_f QCD near the conformal window, the phenomenological constraint S0.1S \simeq 0.1 predicts the techni-dilaton mass MTD600M_{\rm TD} \sim 600 GeV which is within reach of LHC discovery.Comment: 28 pages, 11 eps files, typos corrected, references added, Fig.1 corrected, some discussions added, to be published in PR

    High-K Precession modes: Axially symmetric limit of wobbling motion

    Full text link
    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase-approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178^{178}W; the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives a new insight to understand the wobbling motion in the triaxial superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the first upload, so it is corrected

    Weyl Card Diagrams and New S-brane Solutions of Gravity

    Full text link
    We construct a new card diagram which accurately draws Weyl spacetimes and represents their global spacetime structure, singularities, horizons and null infinity. As examples we systematically discuss properties of a variety of solutions including black holes as well as recent and new time-dependent gravity solutions which fall under the S-brane class. The new time-dependent Weyl solutions include S-dihole universes, infinite arrays and complexified multi-rod solutions. Among the interesting features of these new solutions is that they have near horizon scaling limits and describe the decay of unstable objects.Comment: 78 pages, 32 figures. v2 added referenc

    A Solution for Little Hierarchy Problem and b --> s gamma

    Full text link
    We show that all the parameters which destabilize the weak scale can be taken around the weak scale in the MSSM without conflicting with the SM Higgs mass bound set by LEP experiment. The essential point is that if the lightest CP-even Higgs h in the MSSM has only a small coupling to Z boson, g_{ZZh}, LEP cannot generate the Higgs sufficiently. In the scenario, the SM Higgs mass bound constrains the mass of the heaviest CP-even Higgs H which has the SM like g_{ZZH} coupling. However, it is easier to make the heaviest Higgs heavy by the effect of off-diagonal elements of the mass matrix of the CP-even Higgs because the larger eigenvalue of 2 times 2 matrix becomes larger by introducing off-diagonal elements. Thus, the smaller stop masses can be consistent with the LEP constraints. Moreover, the two excesses observed at LEP Higgs search can naturally be explained as the signals of the MSSM Higgs h and H in this scenario. One of the most interesting results in the scenario is that all the Higgs in the MSSM have the weak scale masses. For example, the charged Higgs mass should be around 130 GeV. This looks inconsistent with the lower bound obtained by the b --> s gamma process as m_{H^\pm}>350GeV. However, we show that the amplitude induced by the charged Higgs can naturally be compensated by that of the chargino if we take the mass parameters by which the little hierarchy problem can be solved. The point is that the both amplitudes have the same order of magnitudes when all the fields in the both loops have the same order of masses.Comment: 14 pages, 5 figures, input parameter slightly changed, figures replaced, references correcte
    corecore