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Abstract

Using the binary tetrahedral group T
′

, the three angles and phase
of the quark CKM mixing matrix are pursued by symmetry-breaking
which involves T

′

-doublet VEVs and the Chen-Mahanthappa CP-
violation mechanism. The NMRT

′

M, Next-to-Minimal-Renormalizable
-T

′

-Model is described, and its one parameter comparison to experi-
mental data is explored.
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1 Introduction

To go beyond the standard model based on G = SU(3) × SU(2) × U(1)
generally has the aim of relating some of the many parameters therein. Well-
known possibilities include grand unification G ∈ GGUT , otherwise extending
the gauge group G ∈ G′, supersymmetry, technicolor, and finally horizontal
or flavor symmetry GF , a global group commuting with G.

In the present paper we study further the use of GF , in particular the
choice GF = T

′

, the binary tetrahedral group. This group can combine the
advantages of its central quotient T ≡ A4 for leptons with the incorporation
of three quark families in a (2+1) pattern with the third much heavier family
treated asymmetrically.

We shall employ Higgs scalars which are all electroweak doublets. An
alternative approach would be to use electroweak singlets, so-called flavons,
but that would necessitate non-renormalizable or irrelevant operators which
we eschew.

In recent work, two of the present authors, together with Kephart [1],
presented a simplified model based on T

′

flavor symmetry. The principal
simplification was that the CKM mixing angles #4 involving the third quark
family were taken to vanish Θ23 = Θ13 = 0.

In terms of the scalar field content, all scalar fields are taken to be doublets
under electroweak SU(2) with vacuum values which underly the symmetry
breaking. Great simplification was originally achieved by the device of re-
stricting scalar fields to irreducible representations of T

′

which are singlets
and triplets only, without any T

′

doublets. There was a good reason for
this because the admission of T

′

-doublet scalars enormously complicates the
symmetry breaking. This enabled the isolation of the Cabibbo angle Θ12 and
to a very reasonable prediction thereof, namely [1] tan 2Θ12 = (

√
2)/3.

Within the same simplified model, in a subsequent paper [2], the de-
parture of Θ12 from this T

′

prediction was used to make predictions for the
departure of the neutrino PMNS angles θij from their tribimaximal values [3].
Also in that model [4], we suggested a smoking-gun T

′

prediction for leptonic
decay of the standard model Higgs scalar. Other related works are [5–15].

In the present article, we examine the addition of T
′

-doublet scalars. As
anticipated in [1], this allows more possibilities of T

′

symmetry breaking

#4Note that here upper case Θij refer to quarks (CKM) and lower case θij will refer to
neutrinos (PMNS).
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and permits non-zero values for Θ23, Θ13 and δKM . We present an explicit
(T

′ × Z2) model and investigate for all the CKM angles.

To understand the incorporation of T
′

-doublet scalars and to make the
present article self-contained, it is necessary to review the previous simplified
model employed in [1, 2, 4] in which T

′

-doublet scalars were deliberately ex-
cluded in order to isolate the Cabibbo angle Θ12. We here adopt the global
symmetry (T

′ × Z2).

Note that we focus on a renormalizable model with few if any free param-
eters and focus on the mixing matrix rather than on masses as the former is
more likely to have a geometrical interpretation while without adding many
extra parameters the masses are unfortunately not naturally predicted. This
is especially true for the lighter quarks; for the t quark the flavor group
assignments allow it much heavier mass.

2 The Previous Simplified Model, MRT
′
M

By MRT
′

M , we mean Minimal Renormalizable T
′

Model. Actually the
global symmetry, to restrict the Yukawa couplings is (T

′ × Z2).

Left-handed quark doublets (t, b)L, (c, d)L, (u, d)L are assigned under (T
′×

Z2) as

(

t
b

)

L

QL (11,+1)
(

c
s

)

L
(

u
d

)

L















QL (21,+1),
(1)

and the six right-handed quarks as

tR (11,+1)
bR (12,−1)
cR
uR

}

CR (23,−1)

sR
dR

}

SR (22,+1).

(2)
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The leptons are assigned as
(

ντ
τ−

)

L(

νµ
µ−

)

L(

νe
e−

)

L































LL(3,+1)
τ−R (11,−1)
µ−
R (12,−1)
e−R (13,−1)

N
(1)
R (11,+1)

N
(2)
R (12,+1)

N
(3)
R (13,+1),

(3)

Next we turn to the symmetry breaking and the necessary scalar sector
with its own potential #5 and Yukawa coupling to the fermions, leptons and
quarks.

The scalar fields in the previous simplified model were namely the two T
′

triplets and two T
′

singlets

H3(3,+1); H
′

3(3,−1); H11(11,+1); H13(13,−1) (4)

which leads to CKM angles Θ23 = Θ13 = 0. That model was used to derive a
formula for the Cabibbo angle [1], to predict corrections [2] to the tribimax-
imal values [3] of PMNS neutrino angles, and to make a prediction for Higgs
boson decay [4].

The Yukawa couplings for the T
′

-triplet and T
′

-singlet scalars were as
follows:

LY =
1

2
M1N

(1)
R N

(1)
R +M23N

(2)
R N

(3)
R

+

{

Y1

(

LLN
(1)
R H3

)

+ Y2

(

LLN
(2)
R H3

)

+ Y3

(

LLN
(3)
R H3

)

+Yτ (LLτRH
′
3) + Yµ (LLµRH

′
3) + Ye (LLeRH

′
3)

}

+Yt({QL}11
{tR}11

H11
)

+Yb({QL}11
{bR}12

H13
)

+YC({QL}21
{CR}23

H
′

3
)

+YS({QL}21
{SR}22

H3)

+h.c.. (5)

#5The scalar potential will not be examined explicitly. We assume that it has enough
parameters to accommodate the required VEVs in a finite neighborhood of parameter
values.
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3 Choice of the Present Model, NMRT
′
M

By NMRT
′

M we mean Next-to Minimal Renormalizable T
′

Model.

We introduce one T
′

doublet scalar in an explicit model. Non-vanishing
Θ23 and Θ13 will be induced by symmetry breaking due to the addition the
T

′

doublet scalar.

The possible choices under (T
′ × Z2) for the new scalar field are:

A H21(21,+1) (6)

B H
′

23(23,−1) (7)

C H
′

22(22,−1) (8)

D H23(23,+1) (9)

The fields in Eqs.(6,7,8,9) allow respectively Yukawa couplings:

A YQtQLtRH21 + h.c. (10)

B YQbQLbRH
′

23
+ h.c. (11)

C YQCQLCRH
′

22 + h.c. (12)

D YQSQLSRH23 + h.c. (13)

This leads potentially to different extensions of theMRT
′

M . For simplic-
ity we keep only one additional term, D, inspired by the Chen-Mahanthappa
mechanism [16] for CP violation. We shall keep YQS real and CP violation
will arise from the imaginary part of T

′

Clebsch-Gordan coefficients.

The vacuum expectation value (VEV) for H23 is taken with the alignment

< H23 >= V23(1, 1) (14)

while as in [1] the other VEVs include

< H3 >= V (1,−2, 1) (15)
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4 Predictions of NMRT
′
M (D)

From the Yukawa term D and the vacuum alignment we can derive for the
down-quark mass matrix

D =









Mb
1√
2
YQSV23

1√
2
YQSV23

0 1√
3
YSV −2

√

2
3
ωYSV

0
√

2
3
YSV

1√
3
ωYSV









(16)

where Mb = YbV13 and ω = eiπ/3.

The hermitian squared mass matrix D ≡ DD† for the charge (−1/3)
quarks is then

D =







M
′2
b

1√
6
YSYQSV V23(1− 2

√
2ω2) 1√

6
YSYQSV V23(ω

2 +
√
2)

1√
6
YSYQSV V23(1− 2

√
2ω−2) 3(YSV )2 −

√
2
3
(YSV )

2

1√
6
YSYQSV V23(ω

−2 +
√
2) −

√
2
3
(YSV )2 (YSV )

2







(17)
where M

′2
b =M2

b + (YQSV23)
2.

Note that in this model the mass matrix for the charge +2/3 quarks is di-
agonal #6 so the CKM mixing matrix arises purely from diagonalization of
D in Eq.(17). The presence of the complex T

′

Clebsch-Gordan in Eq. (17)
permits a Chen-Mahanthappa origin [16] for the KM CP violating phase.

In Eq.(17) the 2 × 2 sub-matrix for the first two families coincides with the
result discussed earlier [1] and hence the successful Cabibbo angle formula
tan 2Θ12 = (

√
3)/2 is preserved as follows.

The relevant 2× 2 submatrix of D is proportional to

D2×2 =

(

3 −
√
2
3

−
√
2
3

1

)

(18)

whose diagonalization leads to the Cabibbo angle formula

tan 2Θ12 =
√
3/2. (19)

#6This uses the approximation that the electron mass is me = 0; c.f. ref. [1].
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For m2
b the experimental value is 17.6GeV 2 [17] although the CKM angles

and phase do not depend on this overall normalization.

Actually our results depend only on assuming that the ratio (YQSV23/YSV )
is much smaller than one.

Defining

D′

= 3D/(YSV )2 (20)

we find

D′

=





D′

11 Aeiψ1 Aηeiψ2

Ae−iψ1 9 −
√
2

Aηe−iψ2 −
√
2 3



 (21)

in which we denoted

D′

11 = 3M
′2
b /(YSV )

2 (22)

A =

(

√

3

2

)

(

YQSV23
YSV

)

|1− 2
√
2ω2| (23)

η =

∣

∣

∣

∣

∣

ω2 +
√
2

1− 2
√
2ω2

∣

∣

∣

∣

∣

= 0.33615... (24)

tanψ1 =
−
√
6

1 +
√
2
= −1.01461... (25)

tanψ2 =

√
3

2
√
2− 1

= 0.94729... (26)

To arrive at predictions for the other CKM mixing elements other than the
Cabibbo angle (i.e. Θ13,Θ23, δKM) one needs only to diagonalize the matrix
D′

in Eq.(21) by

D′

diagonal = V †
CKMD′

VCKM (27)
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We write the mixing matrix as

VCKM =





1 Vts Vtd
Vcb cosΘ12 sin Θ12

Vub − sinΘ12 cosΘ12



 (28)

and substituting Eq.(28) into Eq.(27) and using Eq.(21) leads to

(

Vcb
Vub

)

=
1

D̂′

11

(

D′

11 − 3 −
√
2

−
√
2 D′

11 − 9

)(

Ae−iψ1

Ae−iψ2

)

(29)

where D̂′

11 = (D′

11 − 6−
√
11)(D′

11 − 6 +
√
11).

while from unitarity it follows that

(

Vts
Vtd

)

= −
(

cosΘ12 − sinΘ12

sin Θ12 cosΘ12

)(

V ∗
cb

V ∗
ub

)

(30)

The strategy now is to calculate the CP-violating Kobayashi-Maskawa phase
given by

δKM = γ = arg

(

−VudV
∗
ub

VcdV ∗
cb

)

(31)

and using Eqs.(28,29) we arrive at the formula in terms of D11

δKM = γT ′ = arg

[

−
√
2 + (D′

11 − 9)ηe−i(ψ1−ψ2)

(D′

11 − 3)−
√
2ηe−i(ψ1−ψ2)

]

= arg[Γ(D′

11)] (32)

where Γ, a function of D′

11, is defined for later use.

In Fig. 1, we show a plot of γT ′ versus D′

11 using Eq.(32) and taking the
range of experimentally-allowed γ ≡ δKM from the global fit [18] prompts us
to use a value D′

11 = 19± 2 in the subsequent analysis.

From the preceding equations (28,29) we find a formula for

|Vub/Vcb| = | tanΘ13 sinΘ23| (33)

using unitarity, Eq.(30), from the form for the ratios of CKMmatrix elements

|Vtd/Vts| =
∣

∣

∣

∣

sinΘ12 + Γ(D′

11) cosΘ12

cosΘ12 − Γ(D′

11) sinΘ12

∣

∣

∣

∣

(34)
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Figure 1: The vertical axis is the value of δKM ≡ γT ′ in degrees and the
horizontal axis is the value of D′

11 defined in the text. The dashed horizontal
lines give the 1σ range for δKM allowed by the global fit of [18].

Fig. 2 shows a plot of |Vtd/Vts| as a function of D′

11. It requires a value of
D′

11 of approximately 16 which is sufficiently close to that in Fig. 1.

For the value of |Vub/Vcb| there is approximately a factor two between the
prediction (higher) and the best value from [18].
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Figure 2: The vertical axis is the value of |Vtd/Vts| and the horizontal axis
is the value of D′

11 defined in the text. The dashed horizontal lines give the
value with small error allowed by the global fit of [18].

5 Discussion

Note that once the off-diagonal third-family elements in Eq.(17) are taken as
much smaller than the elements involved in the Cabibbo angle, the two KM
angles and the CP phase are predicted by the present NMRT

′

M in general
agreement so this vindicates the hope expressed in [1].

With regard to alternative NMRT
′

Mmodels discussed earlier the possibilities
A and C modify the charge-2/3 mass matrix where we take flavor and mass
eigenstates coincident. The final possibility C does modify the charge (-
1/3) mass matrix but does not permit CP violation to arise from the Chen-
Mahanthappa mechanism as in the D model we have analysed both here and
in [19].

With respect to the article [19] which was letter length, the present article
presents more technical detail and figures to clarify the results and predictions
merely stated in [19] without explanation.

In summary, we have reported results of studying mixing angles by exploying
the binary tetrahedral group (T

′

) as a global discrete flavor symmetry com-
muting with the local gauge symmetry SU(3)×SU(2)×U(1) of the standard
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model of particle phenomenology. The results are encouraging to pursue this
direction of study.
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