17 research outputs found

    A Rare Case of Idiopathic Spinal Cord Herniation Treated by DuraGen® Collagen Matrix Graft

    Get PDF
    We report a rare case of idiopathic spinal cord herniation (ISCH) with a history of cerebrospinal fluid (CSF) leakage. ISCH is a protrusion of the spinal cord through a dural defect. Thin constructive interference in steady-state (CISS) images clearly demonstrated the herniated cord in the present case. The myelopathy worsened and the patient underwent surgery for reduction of herniated spinal cord; the dural defect was filled by placing collagen matrix graft (DuraGen®) between the inner and outer dural layers. The patient’s symptoms have improved without relapse for 8 months since surgery. This method may be a good surgical option for cases of spinal cord herniation

    Impact of Right Ventricular Dilatation in Patients with Atrial Septal Defect

    Get PDF
    Objective. The aim of this study was to examine the relationship between right ventricular (RV) volume and exercise capacity in adult patients with atrial septal defect (ASD) and to determine the degree of RV dilatation for transcatheter ASD closure. Background. RV dilatation is an indication of transcatheter ASD closure; however, few studies have reported the clinical significance of RV dilatation. Methods. We enrolled 82 consecutive patients (mean age, 49 +/- 18 years; female, 68%) who underwent cardiac magnetic resonance imaging and symptom-limited cardiopulmonary exercise test before ASD closure. The relationship between RV volume and peak oxygen uptake (VO2) was evaluated. Results. The mean RV end-diastolic volume index was 108 +/- 27 ml/m(2) (range, 46 to 180 ml/m(2)). The mean peak VO2 was 24 +/- 7 ml/min/kg (range, 14 to 48 ml/min/kg), and the mean predicted peak VO2 was 90 +/- 23%. There were significant negative relationships of RV end-diastolic volume index with peak VO2 (r = -0.28, p= 120 ml/m(2) was related to the reduction in peak VO2. This criterion of RV dilatation may be valuable for the indication of transcatheter ASD closure

    Basic Study of Susceptibility-Weighted Imaging at 1.5T

    Get PDF
    With the aim of sequence optimization in susceptibility-weighted imaging (SWI), 2 image acquisition parameters (slice thickness and matrix size) and 2 image processing conditions (number of slices per minimum intensity projection (MIP) and Sliding Window) were investigated using a 1.5-T magnetic resonance imaging (MRI) system. The subjects were 12 healthy volunteers and the target region for scanning was the whole brain. Informed consent was obtained from all subjects. First, susceptibility-weighted images were acquired with various slice thicknesses from 1mm to 5mm and various matrix sizes from 256x256 to 512x512, and the images were assessed in terms of the contrast-to-noise ratio (CNR) and were also visually evaluated by three radiologists. Then, the number of slices per MIP and the usefulness of the Sliding Window were investigated. In the study of the optimal slice thickness and matrix size, the results of visual evaluation suggested that a slice thickness of 3mm and a matrix size of 448x448 are optimal, while the results of evaluation based on CNR were not significant. As regards the image processing conditions, the results suggested that the number of slices per MIP should be set to a minimum value of 2 and that the use of Sliding Window is effective. The present study provides useful reference data for optimizing SWI sequences.</p

    The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI

    Get PDF
    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE’s SNR was higher than EPI’s. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE’s image distortioas less than EPI’s. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10−6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10−6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms

    Bone microarchitectural analysis using ultra-high-resolution CT in tiger vertebra and human tibia

    Get PDF
    Background To reveal trends in bone microarchitectural parameters with increasing spatial resolution on ultra-high-resolution computed tomography (UHRCT) in vivo and to compare its performance with that of conventional-resolution CT (CRCT) and micro-CT ex vivo. Methods We retrospectively assessed 5 tiger vertebrae ex vivo and 16 human tibiae in vivo. Seven-pattern and four-pattern resolution imaging were performed on tiger vertebra using CRCT, UHRCT, and micro-CT, and on human tibiae using UHRCT. We measured six microarchitectural parameters: volumetric bone mineral density (vBMD), trabecular bone volume fraction (bone volume/total volume, BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and connectivity density (ConnD). Comparisons between different imaging resolutions were performed using Tukey or Dunnett T3 test. Results The vBMD, BV/TV, Tb.N, and ConnD parameters showed an increasing trend, while Tb.Sp showed a decreasing trend both ex vivo and in vivo. Ex vivo, UHRCT at the two highest resolutions (1024- and 2048-matrix imaging with 0.25-mm slice thickness) and CRCT showed significant differences (p <= 0.047) in vBMD (51.4 mg/cm(3) and 63.5 mg/cm(3)versus 20.8 mg/cm(3)), BV/TV (26.5% and 29.5% versus 13.8 %), Tb.N (1.3 l/mm and 1.48 l/mm versus 0.47 l/mm), and ConnD (0.52 l/mm(3) and 0.74 l/mm(3)versus 0.02 l/mm(3), respectively). In vivo, the 512- and 1024-matrix imaging with 0.25-mm slice thickness showed significant differences in Tb.N (0.38 l/mm versus 0.67 l/mm, respectively) and ConnD (0.06 l/mm(3)versus 0.22 l/mm(3), respectively). Conclusions We observed characteristic trends in microarchitectural parameters and demonstrated the potential utility of applying UHRCT for microarchitectural analysis

    Development of a novel method for visualizing restricted diffusion using subtraction of apparent diffusion coefficient values

    Get PDF
    In order to visualize restricted diffusion, the present study developed a novel method called 'apparent diffusion coefficient (ADC) subtraction method (ASM)' and compared it with diffusion kurtosis imaging (DKI). The diffusion-weighted images of physiological saline, in addtion to bio-phatoms of low cell density and the highest cell density were obtained using two sequences with different effective diffusion times. Then, the calculated ADC values were subtracted. The mean values and standard deviations (SD) of the ADC values of physiological saline, low cell density and the highest cell density phantoms were 2.95 +/- 0.08x10(-3), 1.90 +/- 0.35x10(-3) and 0.79 +/- 0.05x10(-3) mm(2)/sec, respectively. The mean kurtosis values and SD of DKI were 0.04 +/- 0.01, 0.44 +/- 0.13 and 1.27 +/- 0.03, respectively. The ASM and SD values were 0.25 +/- 0.20x10(4), 0.51 +/- 0.41x10(4) and 4.80 +/- 4.51x10(4) (sec/mm(2))(2), respectively. Using bio-phantoms, the present study demonstrated that DKI exhibits restricted diffusion in the extracellular space. Similarly, ASM may reflect the extent of restricted diffusion in the extracellular space

    Diagnostic Value of Dual-time-point F-18 FDG PET/CT and Chest CT for the Prediction of Thymic Epithelial Neoplasms

    Get PDF
    We retrospectively assessed the dual-time-point (DTP) F-18 FDG PET/CT findings of thymic epithelial neoplasms (TENs) and investigated the diagnostic capacity of PET/CT compared to that of CT for predicting carcinoma. We calculated the ratio of the standardized uptake value of the tumor and that of the aortic arch (T/M ratio) for both the 90-min early scan and the 2-h delayed scan in 56 TEN patients. We used a multivariate logistic regression (MLR) analysis to estimate the CT features of carcinoma. We compared the diagnostic capacities of PET/CT and chest CT using receiver operating characteristic (ROC) analyses. The ROC curve revealed that the appropriate cut-off T/M ratio value for the highest accuracy was 2.39 with 75.0% accuracy. The area under the curve (AUC) was 0.855. The statistical analyses for DTP scans of 35 TEN patients demonstrated 74.3% accuracy and 0.838 AUC for the early scan versus 82.9% and 0.825 for the delayed scan. The MLR analysis indicated that mediastinal fat infiltration was a predictor of carcinoma. The ROC curve obtained for the model yielded an AUC of 0.853. Delayed scanning could improve the diagnostic capacity for carcinoma. The T/M ratio and mediastinal fat infiltration are predictive of carcinoma with moderate diagnostic accuracy

    Evaluation of the Imaging Process for a Novel Subtraction Method Using Apparent Diffusion Coefficient Values

    Get PDF
    Diffusion-weighted imaging may be used to obtain the apparent diffusion coefficient (ADC), which aids the diagnosis of cerebral infarction and tumors. An ADC reflects elements of free diffusion. Diffusion kurtosis imaging (DKI) has attracted attention as a restricted diffusion imaging technique. The ADC subtraction method (ASM) was developed to visualize restricted diffusion with high resolution by using two ADC maps taken with different diffusion times. We conducted the present study to provide a bridge between the reported basic ASM research and clinical research. We developed new imaging software for clinical use and evaluated its performance herein. This software performs the imaging process automatically and continuously at the pixel level, using ImageJ software. The new software uses a macro or a plugin which is compatible with various operating systems via a Java Virtual Machine. We tested the new imaging software’s performance by using a Jurkat cell bio-phantom, and the statistical evaluation of the performance clarified that the ASM values of 99.98% of the pixels in the bio-phantom and physiological saline were calculated accurately (p<0.001). The new software may serve as a useful tool for future clinical applications and restricted diffusion imaging research

    Evaluation of Fast Diffusion Kurtosis Imaging Using New Software Designed for Widespread Clinical Use

    Get PDF
    Clinical research using restricted diffusion-weighted imaging, especially diffusion kurtosis (DK) imaging, has been progressing, with reports on its effectiveness in the diagnostic imaging of cerebral infarctions, neurodegenerative diseases, and tumors, among others. However, the application of DK imaging in daily clinical practice has not spread because of the long imaging time required and the use of specific software for image creation. Herein, with the aim of promoting clinical research using DK imaging at any medical facility, we evaluated fast DK imaging using a new software program. We developed a new macro program that produces DK images using general-purpose, inexpensive software (Microsoft Excel and ImageJ), and we evaluated fast DK imaging using bio-phantoms and a healthy volunteer in clinical trials. The DK images created by the new software with diffusion-weighted images captured with short-time imaging sequences were similar to the original DK images captured with long-time imaging sequences. The DK images using three b-values, which can reduce the imaging time by 43%, were equivalent to the DK images using five b-values. The DK imaging technique developed herein might allow any medical facility to increase its daily clinical use of DK imaging and easily conduct clinical research
    corecore