109 research outputs found

    (-)-Epigallocatechin Gallate Reduces Platelet-Derived Growth Factor-BB-Stimulated Interleukin-6 Synthesis in Osteoblasts: Suppression of SAPK/JNK

    Get PDF
    We previously showed that the mitogen-activated protein (MAP) kinase superfamily, p44/p42 MAP kinase, p38 MAP kinase, and stress-activated protein kinase (SAPK)/c-Jun N-terminal (JNK), positively plays a part in the platelet-derived growth factor-BB- (PDGF-BB-) stimulated synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells while Akt and p70 S6 kinase negatively regulates the synthesis. In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, affects the synthesis of IL-6 in these cells and the mechanism. EGCG significantly reduced the IL-6 synthesis and IL-6 mRNA expression stimulated by PDGF-BB, EGCG reduced the PDGF-BB-stimulated IL-6 synthesis also in primary-cultured osteoblasts. EGCG had no effect on the levels of osteocalcin and osteoprotegerin in MC3T3-E1 cells. The PDGF-BB-induced autophosphorylation of PDGF receptor β was not suppressed by EGCG. The PDGF-BB-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was not affected by EGCG. On the other hand, EGCG markedly suppressed the PDGF-BB-induced phosphorylation of SAPK/JNK. Finally, the PDGF-BB-induced phosphorylation of Akt and p70 S6 kinase was not affected by EGCG. These results strongly suggest that EGCG inhibits the PDGF-BB-stimulated synthesis of IL-6 via suppression of SAPK/JNK pathway in osteoblasts

    Sphingosine 1-phosphate (S1P) reduces hepatocyte growth factor-induced migration of hepatocellular carcinoma cells via S1P receptor 2.

    No full text
    A bioactive lipid, sphingosine 1-phosphate (S1P), acts extracellularly as a potent mediator, and is implicated in the progression of various cancers including hepatocellular carcinoma (HCC). S1P exerts its functions by binding to five types of specific receptors, S1P receptor 1 (S1PR1), S1PR2, S1PR3, S1PR4 and S1PR5 on the plasma membrane. However, the exact roles of S1P and each S1PR in HCC cells remain to be clarified. In the present study, we investigated the effect of S1P on the hepatocyte growth factor (HGF)-induced migration of human HCC-derived HuH7 cells, and the involvement of each S1PR. S1P dose-dependently reduced the HGF-induced migration of HuH7 cells. We found that all S1PRs exist in the HuH7 cells. Among each selective agonist for five S1PRs, CYM5520, a selective S1PR2 agonist, significantly suppressed the HGF-induced HuH7 cell migration whereas selective agonists for S1PR1, S1PR3, S1PR4 or S1PR5 failed to affect the migration. The reduction of the HGF-induced migration by S1P was markedly reversed by treatment of JTE013, a selective antagonist for S1PR2, and S1PR2- siRNA. These results strongly suggest that S1P reduces the HGF-induced HCC cell migration via S1PR2. Our findings may provide a novel potential of S1PR2 to therapeutic strategy for metastasis of HCC

    Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells

    No full text
    Abstract Background Interleukin (IL)-6 plays a pivotal role in a variety of CNS functions such as the induction and modulation of reactive astrogliosis, pathological inflammatory responses and neuroprotection. Tumor necrosis factor (TNF)-α induces IL-6 release from rat C6 glioma cells through the inhibitory kappa B (IκB)-nuclear factor kappa B (NFκB) pathway, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The present study investigated the mechanism of TNF-α-induced IL-6 release in more detail than has previously been reported. Methods Cultured C6 cells were stimulated by TNF-α. IL-6 release from the cells was measured by an enzyme-linked immunosorbent assay, and the phosphorylation of IκB, NFκB, the MAP kinase superfamily, and signal transducer and activator of transcription (STAT)3 was analyzed by Western blotting. Levels of IL-6 mRNA in cells were evaluated by real-time reverse transcription-polymerase chain reaction. Results TNF-α significantly induced phosphorylation of NFκB at Ser 536 and Ser 468, but not at Ser 529 or Ser 276. Wedelolactone, an inhibitor of IκB kinase, suppressed both TNF-α-induced IκB phosphorylation and NFκB phosphorylation at Ser 536 and Ser 468. TNF-α-stimulated increases in IL-6 levels were suppressed by wedelolactone. TNF-α induced phosphorylation of STAT3. The Janus family of tyrosine kinase (JAK) inhibitor I, an inhibitor of JAK 1, 2 and 3, attenuated TNF-α-induced phosphorylation of STAT3 and significantly reduced TNF-α-stimulated IL-6 release. Apocynin, an inhibitor of NADPH oxidase that suppresses intracellular reactive oxygen species, significantly suppressed TNF-α-induced IL-6 release and mRNA expression. However, apocynin failed to affect the phosphorylation of IκB, NFκB, p38 MAP kinase, SAPK/JNK or STAT3. Conclusion These results strongly suggest that TNF-α induces IL-6 synthesis through the JAK/STAT3 pathway in addition to p38 MAP kinase and SAPK/JNK in C6 glioma cells, and that phosphorylation of NFκB at Ser 536 and Ser 468, and NADPH oxidase are involved in TNF-α-stimulated IL-6 synthesis.</p

    Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells

    Get PDF
    BACKGROUND: Interleukin (IL)-6 plays a pivotal role in a variety of CNS functions such as the induction and modulation of reactive astrogliosis, pathological inflammatory responses and neuroprotection. Tumor necrosis factor (TNF)-α induces IL-6 release from rat C6 glioma cells through the inhibitory kappa B (IκB)-nuclear factor kappa B (NFκB) pathway, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). The present study investigated the mechanism of TNF-α-induced IL-6 release in more detail than has previously been reported. METHODS: Cultured C6 cells were stimulated by TNF-α. IL-6 release from the cells was measured by an enzyme-linked immunosorbent assay, and the phosphorylation of IκB, NFκB, the MAP kinase superfamily, and signal transducer and activator of transcription (STAT)3 was analyzed by Western blotting. Levels of IL-6 mRNA in cells were evaluated by real-time reverse transcription-polymerase chain reaction. RESULTS: TNF-α significantly induced phosphorylation of NFκB at Ser 536 and Ser 468, but not at Ser 529 or Ser 276. Wedelolactone, an inhibitor of IκB kinase, suppressed both TNF-α-induced IκB phosphorylation and NFκB phosphorylation at Ser 536 and Ser 468. TNF-α-stimulated increases in IL-6 levels were suppressed by wedelolactone. TNF-α induced phosphorylation of STAT3. The Janus family of tyrosine kinase (JAK) inhibitor I, an inhibitor of JAK 1, 2 and 3, attenuated TNF-α-induced phosphorylation of STAT3 and significantly reduced TNF-α-stimulated IL-6 release. Apocynin, an inhibitor of NADPH oxidase that suppresses intracellular reactive oxygen species, significantly suppressed TNF-α-induced IL-6 release and mRNA expression. However, apocynin failed to affect the phosphorylation of IκB, NFκB, p38 MAP kinase, SAPK/JNK or STAT3. CONCLUSION: These results strongly suggest that TNF-α induces IL-6 synthesis through the JAK/STAT3 pathway in addition to p38 MAP kinase and SAPK/JNK in C6 glioma cells, and that phosphorylation of NFκB at Ser 536 and Ser 468, and NADPH oxidase are involved in TNF-α-stimulated IL-6 synthesis
    corecore