3,515 research outputs found

    The X-ray CCD camera of the MAXI Experiment on the ISS/JEM

    Full text link
    MAXI, Monitor of All-sky X-ray Image, is the X-ray observatory on the Japanese experimental module (JEM) Exposed Facility (EF) on the International Space Station (ISS). MAXI is a slit scanning camera which consists of two kinds of X-ray detectors: one is a one-dimensional position-sensitive proportional counter with a total area of 5000cm2\sim 5000 cm^2, the Gas Slit Camera (GSC), and the other is an X-ray CCD array with a total area 200cm2\sim 200 cm^2, the Solid-state Slit Camera (SSC). The GSC subtends a field of view with an angular dimension of 1×180^\circ\times 180^\circ while the SSC subtends a field of view with an angular dimension of 1^\circ times a little less than 180^\circ. In the course of one station orbit, MAXI can scan almost the entire sky with a precision of 1^\circ and with an X-ray energy range of 0.5-30 keV. We have developed the engineering model of CCD chips and the analogue electronics for the SSC. The energy resolution of EM CCD for Mn Kα\alpha has a full-width at half maximum of \simeq 182 eV. Readout noise is \simeq 11 e^- rms.Comment: 10 pages, 4 figures Accepted for Nuclear Instruments and Method in Physics Researc

    Broad Band X-Ray Observations of the Narrow Line X-Ray Galaxy NGC 5506

    Get PDF
    We present a detailed analysis of broad band X-ray data of the Seyfert 2 galaxy NGC5506. 2-10 keV band are detected during a 1-day ASCA observation, while no significant change in the 2-10 keV continuum shape is found. The ASCA spectrum consists of an absorbed power-law, a 'soft excess' below 2 keV, and an Fe Kα\alpha emission line at 6.4 keV. The 'soft excess' can be well described by either thermal emission from very low abundance material at a temperature kT\simeq0.8 keV, or scattered/leaking flux from the primary power-law plus a small amount of thermal emission. Analysis of ROSAT HRI data reveals that the soft X-ray emission is extended on kpc scales in this object, and the extended component may account for most of the soft X-ray excess observed by the ASCA. The result suggests that in this type 2 AGN, the 'soft excess' at least partly comes from an extended region, imposing serious problem for the model in which the source is partially covered. Fe Kα\alpha profile is complex and can not be satisfactorily modeled by a single gaussian. Models of either double gaussians, or a narrow gaussian plus a line from a relativistic accretion disk viewed at an inclination of about 40±10\pm10^\circ provide good fits to the data. However, the inclination of the disk can be substantially larger if there is a small amount of excessive Fe K edge absorption. The intermediate inclinations for NLXGs are consistent with the ideas that the inner accretion disk is aligned with the outer obscuring torus.Comment: 8 pages, 5 postscript figures. to appear in Astrophy. J., 1999, April 2

    Multiscale modeling and simulation for polymer melt flows between parallel plates

    Get PDF
    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, visco-elastic liquid, and visco-elastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR1\omega\tau^R\lesssim 1, and the crossover between the liquid-like and solid-like regime takes place around ωτα1\omega\tau^\alpha\simeq 1 (where ω\omega is the angular frequency of the plate and τR\tau^R and τα\tau^\alpha are Rouse and α\alpha relaxation time, respectively).Comment: 13pages, 12figure

    Magnetic versus nonmagnetic doping effects on the magnetic ordering in the Haldane chain compound PbNi2V2O8

    Full text link
    A study of an impurity driven phase-transition into a magnetically ordered state in the spin-liquid Haldane chain compound PbNi2V2O8 is presented. Both, macroscopic magnetization as well as 51V nuclear magnetic resonance (NMR) measurements reveal that the spin nature of dopants has a crucial role in determining the stability of the induced long-range magnetic order. In the case of nonmagnetic (Mg2+) doping on Ni2+ spin sites (S=1) a metamagnetic transition is observed in relatively low magnetic fields. On the other hand, the magnetic order in magnetically (Co2+) doped compounds survives at much higher magnetic fields and temperatures, which is attributed to a significant anisotropic impurity-host magnetic interaction. The NMR measurements confirm the predicted staggered nature of impurity-liberated spin degrees of freedom, which are responsible for the magnetic ordering. In addition, differences in the broadening of the NMR spectra and the increase of nuclear spin-lattice relaxation in doped samples, indicate a diverse nature of electron spin correlations in magnetically and nonmagnetically doped samples, which begin developing at rather high temperatures with respect to the antiferromagnetic phase transition.Comment: 10 pages, 7 figure

    Kinetically-balanced Gaussian Basis Set Approach to Relativistic Compton Profiles of Atoms

    Full text link
    Atomic Compton profiles (CPs) are a very important property which provide us information about the momentum distribution of atomic electrons. Therefore, for CPs of heavy atoms, relativistic effects are expected to be important, warranting a relativistic treatment of the problem. In this paper, we present an efficient approach aimed at ab initio calculations of atomic CPs within a Dirac-Hartree-Fock (DHF) formalism, employing kinetically-balanced Gaussian basis functions. The approach is used to compute the CPs of noble gases ranging from He to Rn, and the results have been compared to the experimental and other theoretical data, wherever possible. The influence of the quality of the basis set on the calculated CPs has also been systematically investigated.Comment: 31 pages, 12 figure
    corecore