26 research outputs found

    Reproducibility of Histopathological Diagnosis in Poorly Differentiated NSCLC: An International Multiobserver Study

    Get PDF
    INTRODUCTION: The 2004 World Health Organization classification of lung cancer contained three major forms of non-small-cell lung cancer: squamous cell carcinoma (SqCC), adenocarcinoma (AdC), and large cell carcinoma. The goal of this study was first, to assess the reproducibility of a set of histopathological features for SqCC in relation to other poorly differentiated non-small-cell lung cancers and second, to assess the value of immunohistochemistry in improving the diagnosis. METHODS: Resection specimens (n = 37) with SqCC, large cell carcinoma, basaloid carcinoma, sarcomatoid carcinoma, lymphoepithelial-like carcinoma, and solid AdC, were contributed by the participating pathologists. Hematoxylin and eosin (H&E) stained slides were digitized. The diagnoses were evaluated in two ways. First, the histological criteria were evaluated and the (differential) diagnosis on H&E alone was scored. Second, the added value of additional stains to make an integrated diagnosis was examined. RESULTS: The histologic criteria defining SqCC were consistently used, but in poorly differentiated cases they were infrequently present, rendering the diagnosis more difficult. Kappa scores on H&E alone were for SqCC 0.46, large cell carcinoma 0.25, basaloid carcinoma 0.27, sarcomatoid carcinoma 0.52, lymphoepithelial-like carcinoma 0.56, and solid AdC 0.21. The κ score improved with the use of additional stains for SqCC (combined with basaloid carcinoma) to 0.57, for solid AdC to 0.63. CONCLUSION: The histologic criteria that may be used in the differential diagnosis of poorly differentiated lung cancer were more precisely refined. Furthermore, additional stains improved the reproducibility of histological diagnosis of SqCC and AdC, uncovering information that was not present in routine H&E stained slides

    SORORIN and PLK1 as potential therapeutic targets in malignant pleural mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive type of cancer of the thoracic cavity commonly associated with asbestos exposure and a high mortality rate. There is a need for new molecular targets for the development of more effective therapies for MPM. Using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and an RNA interference-based screening, we examined the SORORIN gene as potential therapeutic targets for MPM in addition to the PLK1 gene, which is known for kinase of SORORIN. Following in vitro investigation of the effects of target silencing on MPM cells, cell cycle analyses were performed. SORORIN expression was analyzed immunohistochemically using a total of 53 MPM samples on tissue microarray. SORORIN was found to be overexpressed in the majority of clinical MPM samples and human MPM cell lines as determined by qRT-PCR. Gene suppression of each SORORIN and PLK1 led to growth inhibition in MPM cell lines. Knockdown of SORORIN showed an increased number of G2M-phase population and a larger nuclear size, suggesting mitotic arrest. High expression of SORORIN (SORORIN-H) was found in 50.9% of all the MPM cases, and there is a tendency towards poorer prognosis for the SORORIN-H group but the difference is not significant. Suppression of SORORIN with PLK1 inhibitor BI 6727 showed a combinational growth suppressive effect on MPM cell growth. Given high-dose PLK1 inhibitor induced drug-related adverse effects in several clinical trials, our results suggest inhibition SORORIN-PLK1 axis may hold promise for the treatment of MPMs

    Kinesin family members KIF11 and KIF23 as potential therapeutic targets in malignant pleural mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a rare and aggressive form of cancer commonly associated with asbestos exposure that stems from the thoracic mesothelium with high mortality rate. Currently, treatment options for MPM are limited, and new molecular targets for treatments are urgently needed. Using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and an RNA interference-based screening, we screened two kinesin family members as potential therapeutic targets for MPM. Following in vitro investigation of the target silencing effects on MPM cells, a total of 53 MPMs were analyzed immunohistochemically with tissue microarray. KIF11 and KIF23 transcripts were found to be overexpressed in the majority of clinical MPM samples as well as human MPM cell lines as determined by quantitative RT-PCR. Gene knockdown in MPM cell lines identified growth inhibition following knockdown of KIF11 and KIF23. High expression of KIF11 (KIF11-H) and KIF23 (KIF23-H) were found in 43.4 and 50.9% of all the MPM cases, respectively. Patients who received curative resection with tumors displaying KIF23-H showed shorter overall survival (P=0.0194). These results provide that inhibition of KIF11 and KIF23 may hold promise for treatment of MPMs, raising the possibility that kinesin-based drug targets may be developed in the future

    Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma.

    Get PDF
    Photodynamic therapy (PDT) following lung-sparing extended pleurectomy for malignant pleural mesothelioma (MPM) has been investigated as a potential means to kill residual microscopic cells. High expression levels of folate receptor 1 (FOLR1) have been reported in MPM; therefore, targeting FOLR1 has been considered a novel potential strategy. The present study developed FOLR1‑targeting porphyrin-lipid nanoparticles (folate-porphysomes, FP) for the treatment of PDT. Furthermore, inhibition of activated epidermal growth factor (EGFR)-associated survival pathways enhance PDT efficacy. In the present study, these approaches were combined; FP-based PDT was used together with an EGFR-tyrosine kinase inhibitor (EGFR-TKI). The frequency of FOLR1 and EGFR expression in MPM was analyzed using tissue microarrays. Confocal microscopy and a cell viability assay were performed to confirm the specificity of FOLR1‑targeting cellular uptake and photocytotoxicity in vitro. In vivo fluorescence activation and therapeutic efficacy were subsequently examined. The effects of EGFR-TKI were also assessed in vitro. The in vivo combined antitumor effect of EGFR-TKI and FP-PDT was then evaluated. The results revealed that FOLR1 and EGFR were expressed in 79 and 89% of MPM samples, respectively. In addition, intracellular uptake of FP corresponded well with FOLR1 expression. When MPM cells were incubated with FP and then irradiated at 671 nm, there was significant in vitro cell death, which was inhibited in the presence of free folic acid, thus suggesting the specificity of FPs. FOLR1 targeting resulted in disassembly of the porphysomes and subsequent fluorescence activation in intrathoracic disseminated MPM tumors, as demonstrated by ex vivo tissue imaging. FP-PDT resulted in significant cellular damage and apoptosis in vivo. Furthermore, the combination of pretreatment with EGFR-TKI and FP-PDT induced a marked improvement of treatment responses. In conclusion, FP-based PDT induced selective destruction of MPM cells based on FOLR1 targeting, and pretreatment with EGFR-TKI further enhanced the therapeutic response

    Immunohistochemical identification of Propionibacterium acnes in granuloma and inflammatory cells of myocardial tissues obtained from cardiac sarcoidosis patients.

    No full text
    BACKGROUND:Although rare, cardiac sarcoidosis (CS) is potentially fatal. Early diagnosis and intervention are essential, but histopathologic diagnosis is limited. We aimed to detect Propionibacterium acnes, a commonly implicated etiologic agent of sarcoidosis, in myocardial tissues obtained from CS patients. METHODS AND RESULTS:We examined formalin-fixed paraffin-embedded myocardial tissues obtained by surgery or autopsy and endomyocardial biopsy from patients with CS (n = 26; CS-group), myocarditis (n = 15; M-group), or other cardiomyopathies (n = 39; CM-group) using immunohistochemistry (IHC) with a P. acnes-specific monoclonal antibody. We found granulomas in 16 (62%) CS-group samples. Massive (≥14 inflammatory cells) and minimal (<14 inflammatory cells) inflammatory foci, respectively, were detected in 16 (62%) and 11 (42%) of the CS-group samples, 10 (67%) and 10 (67%) of the M-group samples, and 1 (3%) and 18 (46%) of the CM-group samples. P. acnes-positive reactivity in granulomas, massive inflammatory foci, and minimal inflammatory foci were detected in 10 (63%), 10 (63%), and 8 (73%) of the CS-group samples, respectively, and in none of the M-group and CM-group samples. CONCLUSIONS:Frequent identification of P. acnes in sarcoid granulomas of originally aseptic myocardial tissues suggests that this indigenous bacterium causes granuloma in many CS patients. IHC detection of P. acnes in massive or minimal inflammatory foci of myocardial biopsy samples without granulomas may be useful for differentiating sarcoidosis from myocarditis or other cardiomyopathies
    corecore