71 research outputs found

    Peritoneal dissemination of high-grade serous ovarian cancer: pivotal roles of chromosomal instability and epigenetic dynamics

    Get PDF
    Epithelial ovarian cancer remains the lethal gynecological malignancy in women. The representative histotype is high-grade serous carcinoma (HGSC), and most patients with HGSC present at advanced stages with peritoneal dissemination. Since the peritoneal dissemination is the most important factor for poor prognosis of the patients, complete exploration for its molecular mechanisms is mandatory. In this narrative review, being based on the clinical, pathologic, and genomic findings of HGSC, chromosomal instability and epigenetic dynamics have been discussed as the potential drivers for cancer development in the fallopian tube, acquisition of cancer stem cell (CSC)-like properties, and peritoneal metastasis of HGSC. The natural history of carcinogenesis with clonal evolution, and adaptation to microenvironment of peritoneal dissemination of HGSC should be targeted in the novel development of strategies for prevention, early detection, and precision treatment for patients with HGSC

    Correlations of Vascular Architecture and Angiogenesis with Pituitary Adenoma Histotype

    Get PDF
    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor in solid tumors. However, its role in angiogenesis in pituitary adenoma is controversial. Angiogenesis in solid tumors including pituitary adenoma is commonly evaluated by microvascular density (MVD). Here, we evaluated MVD and the role of VEGF in vascular architecture in 51 pituitary adenomas (24 nonfunctioning, 13 prolactin-secreting, 10 growth hormone-secreting, 3 adrenocorticotropic hormone-secreting, and 1 thyroid-stimulating hormone-secreting). Paraffin sections were stained with CD34 and VEGF. MVD and vascular architecture parameters (vessel area, diameter, perimeter, and roundness) were evaluated in CD34-stained sections. Immunohistochemistry showed 27/51 tumors (53%) were VEGF-positive. There were no significant differences in MVD, any vascular parameter, or adenoma volume between VEGF-positive and VEGF-negative tumors. VEGF mRNA expression was significantly higher in VEGF-positive tumors. There were no significant correlations between VEGF mRNA expression and MVD or vascular parameters. However, vessel diameter and perimeter were significantly larger in prolactin-secreting than nonfunctioning and growth hormone-secreting macroadenomas. The difference in vessel diameter was observed among both VEGF-positive and all adenomas (micro- and macroadenoma). Thus, VEGF may have limited roles in the development of vascular architecture and tumor angiogenesis in pituitary adenomas, but the differences in vessel architecture by histotype (i.e., larger vessel diameter and perimeter in prolactin-secreting adenomas) suggest the hormonal regulation of vessel architecture rather than angiogenesi

    Recovery from a depressive episode during postgraduate residency training is associated with senior doctors\u27 support

    Get PDF
    BackgroundDepression among doctors in residency training can have significant impacts on the health of the residents and on patient safety. This study aimed to investigate factors associated with recovery from a depressive episode experienced during postgraduate residency training.MethodsA questionnaire was administered to 2935 first‐year residents at the beginning of residency training in 2011; follow‐up surveys were conducted after 3 months and at the end of the training in 2013. The questionnaire included the Center for Epidemiologic Studies Depression Scale and the Senior Doctor\u27s Support Scale (SDSS). Logistic regression was used to identify associations between factors that may have been related to recovery from depressive episodes.ResultsA total 182 residents experienced a depressive episode in the 3 months after starting residency training. When reassessed at the end of the 2‐year training, 102 (56%) residents had recovered from the episode and 80 (44%) had not. Increased odds of recovery were associated with a middle or high score on the SDSS (middle score odds ratios [OR] 4.45, 95% confidence interval [CI] 1.0‐18.0, P = .04; and high score OR 5.70, 95% CI 1.4‐23.4, P = .02).ConclusionsSupport from senior doctors should be enhanced to optimize recovery from depressive episodes experienced after the start of residency training

    Psychiatric-disorder-related behavioral phenotypes and cortical hyperactivity in a mouse model of 3q29 deletion syndrome

    Get PDF
    3q29 microdeletion, a rare recurrent copy number variant (CNV), greatly confers an increased risk of psychiatric disorders, such as schizophrenia and autism spectrum disorder (ASD), as well as intellectual disability. However, disease-relevant cellular phenotypes of 3q29 deletion syndrome remain to be identified. To reveal the molecular and cellular etiology of 3q29 deletion syndrome, we generated a mouse model of human 3q29 deletion syndrome by chromosome engineering, which achieved construct validity. 3q29 deletion (Df/+) mice showed reduced body weight and brain volume and, more importantly, impaired social interaction and prepulse inhibition. Importantly, the schizophrenia-related impaired prepulse inhibition was reversed by administration of antipsychotics. These findings are reminiscent of the growth defects and neuropsychiatric behavioral phenotypes in patients with 3q29 deletion syndrome and exemplify that the mouse model achieves some part of face validity and predictive validity. Unbiased whole-brain imaging revealed that neuronal hyperactivation after a behavioral task was strikingly exaggerated in a restricted region of the cortex of Df/+ mice. We further elucidated the cellular phenotypes of neuronal hyperactivation and the reduction of parvalbumin expression in the cortex of Df/+ mice. Thus, the 3q29 mouse model provides invaluable insight into the disease-causative molecular and cellular pathology of psychiatric disorders

    Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine

    Get PDF
    Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research

    Head to head comparison of 2D vs real time 3D dipyridamole stress echocardiography

    Get PDF
    Real-time three-dimensional (RT-3D) echocardiography has entered the clinical practice but true incremental value over standard two-dimensional echocardiography (2D) remains uncertain when applied to stress echo. The aim of the present study is to establish the additional value of RT-3D stress echo over standard 2D stress echocardiography. We evaluated 23 consecutive patients (age = 65 ± 10 years, 16 men) referred for dipyridamole stress echocardiography with Sonos 7500 (Philips Medical Systems, Palo, Alto, CA) equipped with a phased – array 1.6–2.5 MHz probe with second harmonic capability for 2D imaging and a 2–4 MHz matrix-phased array transducer producing 60 × 70 volumetric pyramidal data containing the entire left ventricle for RT-3D imaging. In all patients, images were digitally stored in 2D and 3D for baseline and peak stress with a delay between acquisitions of less than 60 seconds. Wall motion analysis was interpreted on-line for 2D and off-line for RT-3D by joint reading of two expert stress ecocardiographist. Segmental image quality was scored from 1 = excellent to 5 = uninterpretable. Interpretable images were obtained in all patients. Acquisition time for 2D images was 67 ± 21 sec vs 40 ± 22 sec for RT-3D (p = 0.5). Wall motion analysis time was 2.8 ± 0.5 min for 2D and 13 ± 7 min for 3D (p = 0.0001). Segmental image quality score was 1.4 ± 0.5 for 2D and 2.6 ± 0.7 for 3D (p = 0.0001). Positive test results was found in 5/23 patients. 2D and RT-3D were in agreement in 3 out of these 5 positive exams. Overall stress result (positive vs negative) concordance was 91% (Kappa = 0.80) between 2D and RT-3D. During dipyridamole stress echocardiography RT-3D imaging is highly feasible and shows a high concordance rate with standard 2D stress echo. 2D images take longer time to acquire and RT-3D is more time-consuming to analyze. At present, there is no clear clinical advantage justifying routine RT-3D stress echocardiography use

    Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers

    Get PDF
    自己組織化する分子繊維のネットワークを種形成の制御で作り分けることに成功 --人工スマートマテリアル設計の新機軸として期待--. 京都大学プレスリリース. 2020-08-26.Self-sorting double network hydrogels comprising orthogonal supramolecular nanofibers have attracted attention as artificially-regulated multi-component systems. Regulation of network patterns of self-sorted nanofibers is considered as a key for potential applications such as optoelectronics, but still challenging owing to a lack of useful methods to prepare and analyze the network patterns. Herein, we describe the selective construction of two distinct self-sorting network patterns, interpenetrated and parallel, by controlling the kinetics of seed formation with dynamic covalent oxime chemistry. Confocal imaging reveals the interpenetrated self-sorting network was formed upon addition of O-benzylhydroxylamine to a benzaldehyde-tethered peptide-type hydrogelator in the presence of lipid-type nanofibers. We also succeed in construction of a parallel self-sorting network through deceleration of seed formation using a slow oxime exchange reaction. Through careful observation, the formation of peptide-type seeds and nanofibers is shown to predominantly occur on the surface of the lipid-type nanofibers via highly dynamic and thermally-fluctuated processes

    Why do Japanese menus have images? Japanese auto-scopophilia is massage not message

    No full text
    本研究では、日本のレストランのメニューにはイメージが多い理由を探るために、未知の食事の内容を映像的に知らせるため・映像のなさで高級であることを発信するためという情報伝達仮説と、来客の行動を客体化し欲望を高めるという「マッサージ」(McLuhan、1957)仮説を検証した。情報伝達仮説はいずれも支持されなかったが、マッサージ仮説が有意に支持されたので、既知且つ高級な料理の場合でも、メニューに映像を掲載することを推薦した
    corecore