19,733 research outputs found

    Role of shocked accretion flows in regulating the QPO of galactic black hole candidates

    Get PDF
    Using a generalized non-spherical, multi-transonic accretion flow model, we analytically calculate the normalized QPO frequency Μˉqpo{\bar {\bf {\nu}}}_{qpo} of galactic black hole candidates in terms of dynamical flow variables and self-consistently study the dependence of Μˉqpo{\bar {\bf {\nu}}}_{qpo} on such variables. Our results are in fairly close agreement with the observed QPO frequencies of GRS 1915+105. We find that Μˉqpo{\bar {\bf {\nu}}}_{qpo} is quite sensitive to various parameters describing the black hole accretion flow containing dissipative and non-dissipative shock waves. Thus the QPO phenomena is, {\it indeed}, regulated by `shocked' black hole accretion, and, for the first time, we establish a definitive connection between the QPO frequency and the properties of advective BH accretion flows. This information may provide the explanation of some important observations of galactic micro quasars.Comment: Final version accepted for publication in the Astrophysical Journal Letters (ApJL). A considerable part of the paper is almost completely re-written, though the results and the final conclussions are the same. One can now ignore the previous version. 8 pages with four black and white figures. For high resolution Fig. 3, please mail the author <[email protected]

    Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity

    Get PDF
    Using an isothermal MHD code, we have performed three-dimensional, high-resolution simulations of the Parker instability. The initial equilibrium system is composed of exponentially-decreasing isothermal gas and magnetic field (along the azimuthal direction) under a uniform gravity. The evolution of the instability can be divided into three phases: linear, nonlinear, and relaxed. During the linear phase, the perturbations grow exponentially with a preferred scale along the azimuthal direction but with smallest possible scale along the radial direction, as predicted from linear analyses. During the nonlinear phase, the growth of the instability is saturated and flow motion becomes chaotic. Magnetic reconnection occurs, which allows gas to cross field lines. This, in turn, results in the redistribution of gas and magnetic field. The system approaches a new equilibrium in the relaxed phase, which is different from the one seen in two-dimensional works. The structures formed during the evolution are sheet-like or filamentary, whose shortest dimension is radial. Their maximum density enhancement factor relative to the initial value is less than 2. Since the radial dimension is too small and the density enhancement is too low, it is difficult to regard the Parker instability alone as a viable mechanism for the formation of giant molecular clouds.Comment: 8 pages of text, 4 figures (figure 2 in degraded gif format), to appear in The Astrophysical Journal Letters, original quality figures available via anonymous ftp at ftp://ftp.msi.umn.edu/pub/users/twj/parker3d.uu or ftp://canopus.chungnam.ac.kr/ryu/parker3d.u

    Generalized ÎČ\beta-conformal change and special Finsler spaces

    Full text link
    In this paper, we investigate the change of Finslr metrics L(x,y)→Lˉ(x,y)=f(eσ(x)L(x,y),ÎČ(x,y)),L(x,y) \to\bar{L}(x,y) = f(e^{\sigma(x)}L(x,y),\beta(x,y)), which we refer to as a generalized ÎČ\beta-conformal change. Under this change, we study some special Finsler spaces, namely, quasi C-reducible, semi C-reducible, C-reducible, C2C_2-like, S3S_3-like and S4S_4-like Finsler spaces. We also obtain the transformation of the T-tensor under this change and study some interesting special cases. We then impose a certain condition on the generalized ÎČ\beta-conformal change, which we call the b-condition, and investigate the geometric consequences of such condition. Finally, we give the conditions under which a generalized ÎČ\beta-conformal change is projective and generalize some known results in the literature.Comment: References added, some modifications are performed, LateX file, 24 page

    Temporal 1/f^\alpha Fluctuations from Fractal Magnetic Fields in Black Hole Accretion Flow

    Full text link
    Rapid fluctuation with a frequency dependence of 1/fα1/f^{\alpha} (with α≃1−2\alpha \simeq 1 - 2) is characteristic of radiation from black-hole objects. Its origin remains poorly understood. We examine the three-dimensional magnetohydrodynamical (MHD) simulation data, finding that a magnetized accretion disk exhibits both 1/fα1/f^\alpha fluctuation (with α≃2\alpha \simeq 2) and a fractal magnetic structure (with the fractal dimension of D∌1.9D \sim 1.9). The fractal field configuration leads reconnection events with a variety of released energy and of duration, thereby producing 1/fα1/f^\alpha fluctuations.Comment: 5 pages, 4 figures. Accepted for publication in PASJ Letters, vol. 52 No.1 (Feb 2000

    A Multi-dimensional Code for Isothermal Magnetohydrodynamic Flows in Astrophysics

    Get PDF
    We present a multi-dimensional numerical code to solve isothermal magnetohydrodynamic (IMHD) equations for use in modeling astrophysical flows. First, we have built a one-dimensional code which is based on an explicit finite-difference method on an Eulerian grid, called the total variation diminishing (TVD) scheme. Recipes for building the one-dimensional IMHD code, including the normalized right and left eigenvectors of the IMHD Jacobian matrix, are presented. Then, we have extended the one-dimensional code to a multi-dimensional IMHD code through a Strang-type dimensional splitting. In the multi-dimensional code, an explicit cleaning step has been included to eliminate non-zero ∇⋅B\nabla\cdot B at every time step. To estimate the proformance of the code, one- and two-dimensional IMHD shock tube tests, and the decay test of a two-dimensional Alfv\'{e}n wave have been done. As an example of astrophysical applications, we have simulated the nonlinear evolution of the two-dimensional Parker instability under a uniform gravity.Comment: Accepted for publication in ApJ, using aaspp4.sty, 22 text pages with 10 figure

    Entanglement Cost of Antisymmetric States and Additivity of Capacity of Some Quantum Channel

    Full text link
    We study the entanglement cost of the states in the contragredient space, which consists of (d−1)(d-1) dd-dimensional systems. The cost is always log⁡2(d−1)\log_2 (d-1) ebits when the state is divided into bipartite \C^d \otimes (\C^d)^{d-2}. Combined with the arguments in \cite{Matsumoto02}, additivity of channel capacity of some quantum channels is also shown.Comment: revtex 4 pages, no figures, small changes in title and author's affiliation and some typo are correcte

    Properties of Accretion Shocks in Viscous Flows with Cooling Effects

    Full text link
    Low angular momentum accretion flows can have standing and oscillating shock waves. We study the region of the parameter space in which multiple sonic points occur in viscous flows in presence of various cooling effects such as bremsstrahlung and Comptonization. We also quantify the parameter space in which shocks are steady or oscillating. We find that cooling induces effects opposite to heating by viscosity even in modifying the topology of the solutions, though one can never be exactly balanced by the other due to their dissimilar dependence on dynamic and thermodynamic parameters. We show that beyond a critical value of cooling, the flow ceases to contain a shock wave.Comment: 18 pages, 12 figures, Accepted for Publication in Int. J. Mod. Phys.
    • 

    corecore