3,957 research outputs found

    Editorial: Relevance Theory and Intercultural Communication Problems

    Get PDF
    This editorial to the special issue of RiL dedicated to relevance theory and problems of intercultural communication addresses the general requirements that a theory of communication must meet to be applicable to the analysis of intercultural communication. Then it discusses criticism levelled against Grice’s theory of conversational implicature and Brown and Levinson’s theory of politeness on the grounds that these theories were not universal enough to be applied to all data. Finally, it offers some remarks on the applicability of relevance theory to intercultural pragmatics

    Spin and orbital effects of Cooper pairs coupled to a single magnetic impurity

    Full text link
    The Kondo effect strongly depends on spin and orbital degrees of freedom of unconventional superconductivity. We focus on the Kondo effect in the px+ipyp_x + i p_y-wave and dx2y2+idxyd_{x^2 - y^2} + i d_{xy}-wave superconductors to compare the magnetic properties of the spin-triplet and spin-singlet Cooper pairs. The difference appears when both of the paired electrons couple to a local spin directly. For the px+ipyp_x + i p_y-wave, the ground state is always a spin doublet for a Simp=1/2S_{\rm imp} = 1/2 local spin, and it is always a spin singlet for Simp=1S_{\rm imp} = 1. The latter is due to uniaxial spin anisotropy of the triplet Cooper pair. For the dx2y2+idxyd_{x^2 - y^2} + i d_{xy}-wave, the interchange of ground states occurs, which resembles a competition between the Kondo effect and the superconducting energy gap in s-wave superconductors. Thus the internal degrees of freedom of Cooper pairs give a variety to the Kondo effect.Comment: 7 pages, 6 figures, RevTex, to be published in Phys. Rev.

    Numerical Renormalization Group Study of Kondo Effect in Unconventional Superconductors

    Full text link
    Orbital degrees of freedom of a Cooper pair play an important role in the unconventional superconductivity. To elucidate the orbital effect in the Kondo problem, we investigated a single magnetic impurity coupled to Cooper pairs with a px+ipyp_x +i p_y (dx2y2+idxyd_{x^2-y^2}+id_{xy}) symmetry using the numerical renormalization group method. It is found that the ground state is always a spin doublet. The analytical solution for the strong coupling limit explicitly shows that the orbital dynamics of the Cooper pair generates the spin 1/2 of the ground state.Comment: 4 pages, 2 figures, JPSJ.sty, to be published in J. Phys. Soc. Jpn. 70 (2001) No. 1

    Structural phase transition in IrTe2_2: A combined study of optical spectroscopy and band structure calculations

    Full text link
    Ir1x_{1-x}Ptx_xTe2_2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2_2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px_x, py_y) and Te pz_z bands.Comment: 16 pages, 5 figure

    Single Impurity Effects in Multiband Superconductors with Different Sign Order Parameters

    Full text link
    A single impurity problem is investigated for multiband s-wave superconductors with different sign order parameters (+-s-wave superconductors) suggested in Fe-pnictide superconductors. Not only intraband but also interband scattering is considered at the impurity. The latter gives rise to impurity-induced local boundstates close to the impurity. We present an exact form of the energy of the local boundstates as a function of strength of the two types of impurity scattering. The essential role of the impurity is unchanged in finite number of impurities. The main conclusions for a single impurity problem help us understand effects of dense impurities in the +-s-wave superconductors. Local density of states around the single impurity is also investigated. We suggest impurity site nuclear magnetic resonance as a suitable experiment to probe the local boundstates that is peculiar to the +-s-wave state. We find that the +-s-wave model is mapped to a chiral dx2-y2+-idxy-wave, reflecting the unconventional nature of the sign reversing order parameter. For a quantum magnetic impurity, interband scattering destabilizes the Kondo singlet.Comment: 23 pages, 7 figures, to be published in J. Phys. Soc. Jpn. (2009) No.

    Scaling law for the transient behavior of type-II neuron models

    Full text link
    We study the transient regime of type-II biophysical neuron models and determine the scaling behavior of relaxation times τ\tau near but below the repetitive firing critical current, τC(IcI)Δ\tau \simeq C (I_c-I)^{-\Delta}. For both the Hodgkin-Huxley and Morris-Lecar models we find that the critical exponent is independent of the numerical integration time step and that both systems belong to the same universality class, with Δ=1/2\Delta = 1/2. For appropriately chosen parameters, the FitzHugh-Nagumo model presents the same generic transient behavior, but the critical region is significantly smaller. We propose an experiment that may reveal nontrivial critical exponents in the squid axon.Comment: 6 pages, 9 figures, accepted for publication in Phys. Rev.

    Hybrid world object tracking for a virtual teaching agent

    Get PDF
    Fast algorithms and heuristics for real-time object recognition and tracking have enabled a new hybrid world technology in which one can manipulate a real world object and have its virtual world counterpart move correspondingly. This technology has been developed as part of a teaching head platform that was initially designed for language teaching but is now also being used in a range of health-oriented contexts. In this paper, the requirements of the technology are motivated and elucidated, with direct comparison of our proposed heuristics with well known object recognition algorithms

    Nonvanishing Local Moment in Triplet Superconductors

    Full text link
    The Kondo effect in a px+ipyp_x + {\rm i} p_y-wave superconductor is studied by applying the Wilson's numerical renormalization group method. In this type of superconductor with a full energy gap like a s-wave one, the ground state is always a spin doublet, while a local spin is shrunk by the Kondo effect. The calculated magnetic susceptibility indicates that the spin of the ground state is generated by the orbital effect of the px+ipyp_x + {\rm i} p_y-wave Cooper pairs. The effect of spin polarization of the triplet superconductor is also discussed.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jp

    Niobium based intermetallics as a source of high-current/high-magnetic field superconductors

    Full text link
    The article is focused on low temperature intermetallic A15 superconducting wires development for Nuclear Magnetic Resonance, NMR, and Nuclear Magnetic Imaging, MRI, magnets and also on cryogen-free magnets. There are many other applications which would benefit from new development such as future Large Hadron Collider to be built from A15 intermetallic conductors. This paper highlights the current status of development of the niobium based intermetallics with special attention to Nb 3 (Al 1-x, Ge x). Discussion is focused on the materials science aspects of conductor manufacture, such as b-phase (A15) formation, with particular emphasis on the maximisation of the superconducting parameters, such as critical current density, Jc, critical temperature, Tc, and upper critical field, Hc2 . Many successful manufacturing techniques of the potential niobium-aluminide intermetallic superconducting conductors, such as solid-state processing, liquid-solid processing, rapid heating/cooling processes, are described, compared and assessed. Special emphasis has been laid on conditions under which the Jc (B) peak effect occurs in some of the Nb3(Al,Ge) wires. A novel electrodeoxidizing method developed in Cambridge whereby the alloys and intermetallics are produced cheaply making all superconducting electromagnetic devices, using low cost LTCs, more cost effective is presented.This new technique has potential to revolutionise the existing superconducting industry enabling reduction of cost orders of magnitude.Comment: Paper presented at EUCAS'01 conference, Copenhagen, 26-30 August 200
    corecore