74 research outputs found

    Increased Production and Molecular Weight of Artificial Polyhydroxyalkanoate Poly(2-hydroxybutyrate) Above the Glass Transition Temperature Threshold

    No full text
    Poly(2-hydroxybutyrate) [P(2HB)] is an artificial polyhydroxyalkanoate (PHA) synthesized using engineered 2-hydroxyalkanoate-polymerizing PHA synthase. In the present study, the effect of temperature on P(2HB) synthesis was investigated. Recombinant Escherichia coli harboring PHA synthetic genes were cultivated with 2HB and 3-hydroxybutyrate (3HB) supplementation at varied temperatures ranging from 24 to 36 degrees C for the synthesis of P(2HB) and natural PHA P(3HB), respectively. P(2HB) production and its molecular weight increased considerably at a threshold temperature of 32-34 degrees C. The trend was not observed during the synthesis of P(3HB). Notably, the threshold temperature was close to the glass transition temperature (T-g) of P(2HB) (30 degrees C), while the T-g of P(3HB) (4 degrees C) was much lower than the cultivation temperature. The results suggest that thermal motion of the polymer chains influenced the production and molecular weight of the obtained polymer. According to the results, the production and molecular weight of PHA drastically changes at the threshold temperature, which is linked to the T-g of the polymer. The hypothesis should be applicable to PHAs in general, and potentially explains the inability to biosynthesize high-molecular-weight polylactate homopolymer with a T-g of 60 degrees C

    Indirect positive effects of a sigma factor RpoN deletion on the lactate-based polymer production in Escherichia coli

    Get PDF
    The production of bacterial polyesters, polyhydroxyalkanoates (PHAs), has been improved by several rational approaches such as overexpression and/or engineering of the enzymes directly related to PHA biosynthetic pathways. In this study, a new approach at transcription level has been applied to a new category of the copolymer of lactate (LA) and 3-hydroxybutyrate (3HB), P(LA-co-3HB). When the 4 disrupting mutants of sigma factors in Escherichia coli, rpoN, rpoS, fliA, fecI, were used as platforms for production of P(LA-co-3HB), increases in the production level and LA fraction of the copolymer were observed for the mutant strain with rpoN disruption. These positive impacts on the polymer production were caused in an indirect manner via changes in the multiple genes governed by RpoN. A genome-wide engineering by sigma factors would be a versatile approach for the production of value-added products of interest and available for combination with the other beneficial tools

    Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme

    Get PDF
    Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coil JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grown on xylose produced a copolymer having a higher LA fraction (34 mol%) than that grown on glucose (26 mol%). This benefit of xylose was further enhanced by combining it with an evolved LPE (ST/FS/QK), achieving a copolymer production having 60 mol% LA from xylose, while glucose gave a 47 mol% LA under the same condition. The overall carbon yields from the sugars to the polymer were similar for xylose and glucose, but the ratio of the LA and 3HB units in the copolymer was different. Notably, the P(LA-co-3HB) yield from xylose (7.3 g l(-1)) was remarkably higher than that of P(3HB) (4.1 g l(-1)), indicating P(LA-co-3HB) as a potent target for xylose utilization. (C) 2012 Elsevier Inc. All rights reserved

    Biosynthesis of poly(glycolate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate) in Escherichia coli expressing sequence-regulating polyhydroxyalkanoate synthase and medium-chain-length 3-hydroxyalkanoic acid coenzyme A ligase

    Get PDF
    Chimeric polyhydroxyalkanoate synthase PhaCAR is characterized by the capacity to incorporate unusual glycolate (GL) units and spontaneously synthesize block copolymers. The GL and 3-hydroxybutyrate (3HB) copolymer synthesized by PhaCAR is a random-homo block copolymer, poly(GL-ran-3HB)-b-poly(3HB). In the present study, medium-chain-length 3-hydroxyhexanoate (3HHx) units were incorporated into this copolymer using PhaCAR for the first time. The coenzyme A (CoA) ligase from Pseudomonas oleovorans (AlkK) serves as a simple 3HHx-CoA supplying route in Escherichia coli from exogenously supplemented 3HHx. NMR analyses of the obtained polymers revealed that 3HHx units were randomly connected to 3HB units, whereas GL units were heterogeneously distributed. Therefore, the polymer is composed of two segments: P(3HB-co-3HHx) and P(GL-co-3HB-co-3HHx). The thermal and mechanical properties of the terpolymer indicate no contiguous P(3HB) segments in the material, consistent with the NMR results. Therefore, PhaCAR synthesized the novel block copolymer P(3HB-co-3HHx)-b-P(GL-co-3HB-co-3HHx), which is the first block PHA copolymer comprising two copolymer segments

    Establishment of a metabolic pathway to introduce the 3-hydroxyhexanoate unit into LA-based polyesters via a reverse reaction of β-oxidation in Escherichia coli LS5218

    Get PDF
    New lactate (LA)-based terpolymers, P[LA-co-3-hydroxybutyrate (3HB)-co-3-hydroxyhexananoate (3HHx)]s, were produced in recombinant Escherichia coli LS5218 harboring three genes encoding LA-polymerizing enzyme (LPE), propionyl-coenzyme A (CoA) transferase (PCT) and (R)-specific enoyl-CoA hydratase (PhaJ4). When the recombinant LS5218 was grown on glucose with the feeding of butyrate, 3HB-CoA and 3HHx-CoA were supplied, probably via reverse reactions of the β-oxidation pathway and PhaJ4. LPE copolymerized the two monomers with LA-CoA, which was generated by PCT, to yield the terpolymers. Gas chromatography analysis revealed that the terpolymers consisted of 2.7 to 34 mol% LA, 38 to 81 mol% 3HB and 17 to 33 mol% 3HHx units, which can be varied depending on the butyrate concentration fed in the medium. In addition, 1H-13C COSY NMR analysis provided evidence for a linkage between LA and 3HHx units in the polymer

    Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum

    Get PDF
    We previously synthesized poly(3-hydroxybutyrate) [P(3HB)] in recombinant Corynebacterium glutamicum, a prominent producer of amino acids. In this study, a two-step cultivation was established for the dual production of glutamate and P(3HB) due to the differences in the optimal concentration of biotin. Glutamate was extracellularly produced first under the biotin-limited condition of 0.3 μg/L. Production was then shifted to P(3HB) by addition of biotin to a total concentration of 9 μg/L. The final products obtained were 18 g/L glutamate and 36 wt% of P(3HB)

    Enhanced poly(3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase

    Get PDF
    Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells

    Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum

    Get PDF
    Direct polyhydroxybutyrate (PHB) production from starch was for the first time achieved using engineered Corynebacterium glutamicum expressing PHB biosynthetic genes and displaying α-amylase on its cell surface. The engineered strain accumulated 6.4 wt% PHB from starch which was higher than that obtained from glucose (4.9 wt%)

    Biosynthesis of glycolate-based polyesters containing medium-chain-length 3-hydroxyalkanoates in recombinant Escherichia coli expressing engineered polyhydroxyalkanoate synthase

    Get PDF
    Glycolate(GL)-based polyesters were for the first time produced in the recombinant Escherichia coli fatty acid β-oxidation pathway reinforcing mutant LS5218, using extracellularly added GL as a monomer precursor. Cells expressing a Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate synthase (PhaC1STQK) from Pseudomonas sp. 61-3, propionyl-CoA transferase from Megasphaera elsdenii and enoyl-CoA hydratase from Pseudomonas aeruginosa grown on GL and dodecanoate were found to produce novel copolymers of GL with 3-hydroxyalkanoates (3HAs) (C4-C12), P(GL-co-3HA), with a weight-average molecular weight of 34000. The 1H NMR analyses of the copolymer revealed the incorporation of GL units into the polymer chain. This result demonstrates that PhaC1STQK polymerized glycolyl-CoA as a monomer substrate. Additionally, the novel lactate(LA)-based polyester P(LA-co-3HA) was produced by substituting GL with LA, indicating that the method is versatile and allows the production of a variety of biopolymers
    corecore