1,587 research outputs found

    N\'eel and singlet RVB orders in the t-J model

    Full text link
    The N\'eel and the singlet RVB orders of the {\it t-J} model in a 2D square lattice are studied in the slave-boson mean-field approximation. It is shown that the N\'eel order parameter takes the maximum value at the finite temperature and disappear at the lower temperature for a certain range of doping. It is also shown that the N\'eel and the singlet RVB orders coexist at low temperature. This suggests the possibility of the coexistence of the N\'eel and the superconducting orders.Comment: RevTeX, 8 pages, 1 postscript figure. To appear in Physica C, Volume 257, issue 38

    Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness

    Full text link
    Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed.Comment: RevTex, 14 pages, 6 PostScript figures, to appear in Phys. Rev.

    Theoretical Study of Friction: A Case of One-Dimensional Clean Surfaces

    Full text link
    A new method has been proposed to evaluate the frictional force in the stationary state. This method is applied to the 1-dimensional model of clean surfaces. The kinetic frictional force is seen to depend on velocity in general, but the dependence becomes weaker as the maximum static frictional force increases and in the limiting case the kinetic friction gets only weakly dependent on velocity as described by one of the laws of friction. It is also shown that there is a phase transition between state with vanishing maximum static frictional force and that with finite one. The role of randomness at the interface and the relation to the impurity pinning of the sliding Charge-Density-Wave are discussed. to appear in Phys.Rev.B. abstract only. Full text is available upon request. E-mail: [email protected]: 2 pages, Plain TEX, OUCMT-94-

    Dynamical frictional phenomena in an incommensurate two-chain model

    Full text link
    Dynamical frictional phenomena are studied theoretically in a two-chain model with incommensurate structure. A perturbation theory with respect to the interchain interaction reveals the contributions from phonons excited in each chain to the kinetic frictional force. The validity of the theory is verified in the case of weak interaction by comparing with numerical simulation. The velocity and the interchain interaction dependences of the lattice structure are also investigated. It is shown that peculiar breaking of analyticity states appear, which is characteristic to the two-chain model. The range of the parameters in which the two-chain model is reduced to the Frenkel-Kontorova model is also discussed.Comment: RevTex, 9 pages, 7 PostScript figures, to appear in Phys. Rev.

    Stretched exponential behavior in remanent lattice striction of a (La,Pr)1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} bilayer manganite single crystal

    Get PDF
    We have investigated the time dependence of remanent magnetostriction in a (La,Pr)1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} single crystal, in order to examine the slow dynamics of lattice distortion in bilayered manganites. A competition between double exchange and Jahn-Teller type orbital-lattice interactions results in the observed lattice profile following a stretched exponential function. This finding suggests that spatial growth of the local lattice distortions coupled with eg_{g}-electron orbital strongly correlates with the appearance of the field-induced CMR effect.Comment: 3 figure

    Effect of Local Inhomogeneity on Nucleation; Case of Charge Density Wave Depinning

    Full text link
    The spatial inhomogeneities are expected to affect nucleation process in an essential way. These effects are studied theoretically by considering the case of the depinning of the charge density wave as a typical example. The threshold field of the depinning of the one-dimensional commensurate charge density wave with one impurity has been examined classically based on the phase Hamiltonian at absolute zero. It is found that the threshold field is lowered by a finite amount compared to that in the absence of an impurity.Comment: pages 12, LaTeX, 9 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp

    Resistive relaxation in field-induced insulator-metal transition of a (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} bilayer manganite single crystal

    Get PDF
    We have investigated the resistive relaxation of a (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} single crystal, in order to examine the slow dynamics of the field-induced insulator to metal transition of bilayered manganites. The temporal profiles observed in remanent resistance follow a stretched exponential function accompanied by a slow relaxation similar to that obtained in magnetization and magnetostriction data. We demonstrate that the remanent relaxation in magnetotransport has a close relationship with magnetic relaxation that can be understood in the framework of an effective medium approximation by assuming that the first order parameter is proportional to the second order one.Comment: 6 pages,5 figure

    Friction, order, and transverse pinning of a two-dimensional elastic lattice under periodic and impurity potentials

    Full text link
    Frictional phenomena of two-dimensional elastic lattices are studied numerically based on a two-dimensional Frenkel-Kontorova model with impurities. It is shown that impurities can assist the depinning. We also investigate anisotropic ordering and transverse pinning effects of sliding lattices, which are characteristic of the moving Bragg glass state and/or transverse glass state. Peculiar velocity dependence of the transverse pinning is observed in the presence of both periodic and random potentials and discussed in the relation with growing order and discommensurate structures.Comment: RevTeX, 4 pages, 5 figures. to appear in Phys. Rev. B Rapid Commu

    Effect of suppression of local distortion on magnetic, electrical and thermal transport properties of Cr substituted bi-layer manganite LaSr2_{2}Mn2_{2}O7_{7}

    Get PDF
    We have investigated magnetic, electrical and thermal transport properties (Seebeck effect and thermal conductivity) of LaSr2_{2}Mn2−y_{2-y}Cry_{y}O7_{7} polycrystalline samples (yy=0.1, 0.2, 0.4 and 0.6). The Cr3+^{3+} substitution for Mn3+^{3+} sites causes a removal of dx2−y2d_{x^2-y^2} orbital of ege_g-electron resulting in a volume shrinkage of lattice. Magnetic measurements reveal the appearance of a glassy behavior for Cr-doped samples, accompanied by both a collapse of the A-type antiferromagnetic structure and the growth of ferromagnetic clusters. Cr-doping effect on electrical transport strongly enhances an insulating behavior over a wide range of temperature, while it suppresses a local minimum of thermoelectric power at lower temperatures. The phonon thermal conduction gradually rises with increasing Cr content, which is contradictory to a typical impurity effect on thermal conductivity. We attribute this to a suppression of local lattice distortion through the introduction of Jahn-Teller inactive ions of Cr3+^{3+}.Comment: 8 pages, 9figure
    • …
    corecore