1,399 research outputs found
Stretched exponential behavior in remanent lattice striction of a (La,Pr)SrMnO bilayer manganite single crystal
We have investigated the time dependence of remanent magnetostriction in a
(La,Pr)SrMnO single crystal, in order to examine
the slow dynamics of lattice distortion in bilayered manganites. A competition
between double exchange and Jahn-Teller type orbital-lattice interactions
results in the observed lattice profile following a stretched exponential
function. This finding suggests that spatial growth of the local lattice
distortions coupled with e-electron orbital strongly correlates with the
appearance of the field-induced CMR effect.Comment: 3 figure
Effect of Local Inhomogeneity on Nucleation; Case of Charge Density Wave Depinning
The spatial inhomogeneities are expected to affect nucleation process in an
essential way. These effects are studied theoretically by considering the case
of the depinning of the charge density wave as a typical example. The threshold
field of the depinning of the one-dimensional commensurate charge density wave
with one impurity has been examined classically based on the phase Hamiltonian
at absolute zero. It is found that the threshold field is lowered by a finite
amount compared to that in the absence of an impurity.Comment: pages 12, LaTeX, 9 figures, uses jpsj.sty, submitted to J. Phys. Soc.
Jp
Theoretical Study of Friction: A Case of One-Dimensional Clean Surfaces
A new method has been proposed to evaluate the frictional force in the
stationary state. This method is applied to the 1-dimensional model of clean
surfaces. The kinetic frictional force is seen to depend on velocity in
general, but the dependence becomes weaker as the maximum static frictional
force increases and in the limiting case the kinetic friction gets only weakly
dependent on velocity as described by one of the laws of friction. It is also
shown that there is a phase transition between state with vanishing maximum
static frictional force and that with finite one. The role of randomness at the
interface and the relation to the impurity pinning of the sliding
Charge-Density-Wave are discussed. to appear in Phys.Rev.B. abstract only. Full
text is available upon request. E-mail: [email protected]: 2 pages, Plain TEX, OUCMT-94-
Resistive relaxation in field-induced insulator-metal transition of a (LaPr)SrMnO bilayer manganite single crystal
We have investigated the resistive relaxation of a
(LaPr)SrMnO single crystal, in
order to examine the slow dynamics of the field-induced insulator to metal
transition of bilayered manganites. The temporal profiles observed in remanent
resistance follow a stretched exponential function accompanied by a slow
relaxation similar to that obtained in magnetization and magnetostriction data.
We demonstrate that the remanent relaxation in magnetotransport has a close
relationship with magnetic relaxation that can be understood in the framework
of an effective medium approximation by assuming that the first order parameter
is proportional to the second order one.Comment: 6 pages,5 figure
Anomalous pressure effect on the remanent lattice striction of a (La,Pr)SrMnO bilayered manganite single crystal
We have studied the pressure effect on magnetostriction, both in the
-plane and along the c-axis, of a (La,Pr)SrMnO
bilayered manganite single crystal over the temperature region where the
field-induced ferromagnetic metal (FMM) transition takes place. For comparison,
we have also examined the pressure dependence of magnetization curves at the
corresponding temperatures. The applied pressure reduces the critical field of
the FMM transition and it enhances the remanent magnetostriction. An anomalous
pressure effect on the remanent lattice relaxation is observed and is similar
to the pressure effect on the remanent magnetization along the c-axis. These
findings are understood from the view point that the double-exchange
interaction driven FMM state is strengthened by application of pressure.Comment: 7 pages,7 figure
Steplike Lattice Deformation of Single Crystalline (LaPr)SrMnO Bilayered Manganite
We report a steplike lattice transformation of single crystalline
(LaPr)SrMnObilayered manganite
accompanied by both magnetization and magnetoresistive jumps, and examine the
ultrasharp nature of the field-induced first-order transition from a
paramagnetic insulator to a ferromagnetic metal phase accompanied by a huge
decrease in resistance. Our findings support that the abrupt magnetostriction
is closely related to an orbital frustration existing in the inhomogeneous
paramagnetic insulating phase rather than a martensitic scenario between
competing two phases.Comment: 5 pages,4figures, v4: figures are changed, in press in Phys.Rev.Let
- …