8,800 research outputs found

    On Haag Duality for Pure States of Quantum Spin Chain

    Full text link
    We consider quantum spin chains and their translationally invariant pure states. We prove Haag duality for quasilocal observables localized in semi-infinite intervals when the von Neumann algebras generated by observables localized in these intervals are not type I

    Entanglement, Haag-duality and type properties of infinite quantum spin chains

    Full text link
    We consider an infinite spin chain as a bipartite system consisting of the left and right half-chain and analyze entanglement properties of pure states with respect to this splitting. In this context we show that the amount of entanglement contained in a given state is deeply related to the von Neumann type of the observable algebras associated to the half-chains. Only the type I case belongs to the usual entanglement theory which deals with density operators on tensor product Hilbert spaces, and only in this situation separable normal states exist. In all other cases the corresponding state is infinitely entangled in the sense that one copy of the system in such a state is sufficient to distill an infinite amount of maximally entangled qubit pairs. We apply this results to the critical XY model and show that its unique ground state provides a particular example for this type of entanglement.Comment: LaTeX2e, 34 pages, 1 figure (pstricks

    Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges

    Full text link
    We measured the electronic local density of states (LDOS) of graphite surfaces near monoatomic step edges, which consist of either the zigzag or armchair edge, with the scanning tunneling microscopy (STM) and spectroscopy (STS) techniques. The STM data reveal that the (3×3)R30(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures coexist over a length scale of 3-4 nm from both the edges. By comparing with density-functional derived nonorthogonal tight-binding calculations, we show that the coexistence is due to a slight admixing of the two types of edges at the graphite surfaces. In the STS measurements, a clear peak in the LDOS at negative bias voltages from -100 to -20 mV was observed near the zigzag edges, while such a peak was not observed near the armchair edges. We concluded that this peak corresponds to the graphite "edge state" theoretically predicted by Fujita \textit{et al.} [J. Phys. Soc. Jpn. {\bf 65}, 1920 (1996)] with a tight-binding model for graphene ribbons. The existence of the edge state only at the zigzag type edge was also confirmed by our first-principles calculations with different edge terminations.Comment: 20 pages, 11 figure

    Color screening in a constituent quark model of hadronic matter

    Full text link
    The effect of color screening on the formation of a heavy quark-antiquark (QQˉQ\bar{Q}) bound state--such as the J/ψJ/\psi meson--is studied using a constituent-quark model. The response of the nuclear medium to the addition of two color charges is simulated directly in terms of its quark constituents via a string-flip potential that allows for quark confinement within hadrons yet enables the hadrons to separate without generating unphysical long-range forces. Medium modifications to the properties of the heavy meson, such as its energy and its mean-square radius, are extracted by solving Schr\"odinger's equation for the QQˉQ\bar{Q} pair in the presence of a (screened) density-dependent potential. The density dependence of the heavy-quark potential is in qualitative agreement with earlier studies of its temperature dependence extracted from lattice calculations at finite temperature. In the present model it is confirmed that abrupt changes in the properties of the J/ψJ/\psi-meson in the hadronic medium ({\it plasma}), correlate strongly with the deconfining phase transition.Comment: 7 pages, 3 figures, submitted to PRC for publication, uses revtex

    CP^1+U(1) Lattice Gauge Theory in Three Dimensions: Phase Structure, Spins, Gauge Bosons, and Instantons

    Full text link
    In this paper we study a 3D lattice spin model of CP1^1 Schwinger-bosons coupled with dynamical compact U(1) gauge bosons. The model contains two parameters; the gauge coupling and the hopping parameter of CP1^1 bosons. At large (weak) gauge couplings, the model reduces to the classical O(3) (O(4)) spin model with long-range and/or multi-spin interactions. It is also closely related to the recently proposed "Ginzburg-Landau" theory for quantum phase transitions of s=1/2s=1/2 quantum spin systems on a 2D square lattice at zero temperature. We numerically study the phase structure of the model by calculating specific heat, spin correlations, instanton density, and gauge-boson mass. The model has two phases separated by a critical line of second-order phase transition; O(3) spin-ordered phase and spin-disordered phase. The spin-ordered phase is the Higgs phase of U(1) gauge dynamics, whereas the disordered phase is the confinement phase. We find a crossover in the confinement phase which separates dense and dilute regions of instantons. On the critical line, spin excitations are gapless, but the gauge-boson mass is {\it nonvanishing}. This indicates that a confinement phase is realized on the critical line. To confirm this point, we also study the noncompact version of the model. A possible realization of a deconfinement phase on the criticality is discussed for the CPN^N+U(1) model with larger NN.Comment: Discussion of finite size scaling, O(4) spin correlation adde

    Self-Reduction Rate of a Microtubule

    Full text link
    We formulate and study a quantum field theory of a microtubule, a basic element of living cells. Following the quantum theory of consciousness by Hameroff and Penrose, we let the system to reduce to one of the classical states without measurement if certain conditions are satisfied(self-reductions), and calculate the self-reduction time τN\tau_N (the mean interval between two successive self-reductions) of a cluster consisting of more than NN neighboring tubulins (basic units composing a microtubule). τN\tau_N is interpreted there as an instance of the stream of consciousness. We analyze the dependence of τN\tau_N upon NN and the initial conditions, etc. For relatively large electron hopping amplitude, τN\tau_N obeys a power law τNNb\tau_N \sim N^b, which can be explained by the percolation theory. For sufficiently small values of the electron hopping amplitude, τN\tau_N obeys an exponential law, τNexp(cN)\tau_N \sim \exp(c' N). By using this law, we estimate the condition for τN\tau_N to take realistic values τN\tau_N \raisebox{-0.5ex}{>\stackrel{>}{\sim}} 10110^{-1} sec as NN \raisebox{-0.5ex} {>\stackrel{>}{\sim}} 1000.Comment: 7 pages, 9 figures, Extended versio

    Quarkonium formation in statistical and kinetic models

    Full text link
    I review the present status of two related models addressing scenarios in which the formation of heavy quarkonium states in high energy heavy ion collisions proceed via "off-diagonal" combinations of a quark and an antiquark. The physical process involved belongs to a general class of quark "recombination", although technically the recombining quarks here were never previously bound in a quarkonium state. Features of these processes relevant as a signature of color deconfinement are discussed.Comment: 6 pages, 8 figures, based on invited plenary talk at Hard Probes 2004, Ericeira, Portugal, November 3-11, 2004, to appear in the proceeding

    Effects of a Supermassive Black Hole Binary on a Nuclear Gas Disk

    Full text link
    We study influence of a galactic central supermassive black hole (SMBH) binary on gas dynamics and star formation activity in a nuclear gas disk by making three-dimensional Tree+SPH simulations. Due to orbital motions of SMBHs, there are various resonances between gas motion and the SMBH binary motion. We have shown that these resonances create some characteristic structures of gas in the nuclear gas disk, for examples, gas elongated or filament structures, formation of gaseous spiral arms, and small gas disks around SMBHs. In these gaseous dense regions, active star formations are induced. As the result, many star burst regions are formed in the nuclear region.Comment: 19 pages, 11 figures, accepted for publication in Ap
    corecore