10 research outputs found

    Co-culturing of follicles with interstitial cells in collagen gel reproduce follicular development accompanied with theca cell layer formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism of theca cell layer formation in mammalian ovaries has not been elucidated; one reason is that there is no follicle culture system that can reproduce theca cell layer formation in vitro. Therefore, a three-dimensional follicle culture system that can reproduce theca cell layer formation is required.</p> <p>Methods</p> <p>A collagen gel was used in the follicle culture system. To determine the optimum conditions for follicle culture that can reproduce theca cell layer formation, the effects of hormonal treatment and cell types co-cultured with follicles were examined. In addition, immunohistochemistry was used to examine the properties of the cell layers formed in the outermost part of follicles.</p> <p>Results</p> <p>Follicles maintained a three-dimensional shape and grew in collagen gel. By adding follicle-stimulating hormone (FSH) and co-culturing with interstitial cells, the follicles grew well, and cell layers were formed in the outermost part of follicles. Immunohistochemistry confirmed that the cells forming the outermost layers of the follicles were theca cells.</p> <p>Conclusion</p> <p>In this study, follicle culture system that can reproduce theca cell layer formation <it>in vitro </it>was established. In our opinion, this system is suitable for the analysis of theca cell layer formation and contributes to our understanding of the mechanisms of folliculogenesis.</p

    CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex

    Get PDF
    CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at the cell margin. CLASPs stabilize MTs by promoting pauses and restricting MT growth and shortening episodes to this peripheral cell region. We demonstrate that the middle part of CLASPs binds directly to EB1 and to MTs. Furthermore, we show that the association of CLASP2 with the cell cortex is MT independent and relies on its COOH-terminal domain. Both EB1- and cortex-binding domains of CLASP are required to promote MT stability. We propose that CLASPs can mediate interactions between MT plus ends and the cell cortex and act as local rescue factors, possibly through forming a complex with EB1 at MT tips

    Synaptic activity prompts γ-secretase–mediated cleavage of EphA4 and dendritic spine formation

    Get PDF
    Alzheimer's disease is an age-dependent neurodegenerative disorder that is characterized by a progressive decline in cognitive function. γ-secretase dysfunction is evident in many cases of early onset familial Alzheimer's disease. However, the mechanism by which γ-secretase dysfunction results in memory loss and neurodegeneration is not fully understood. Here, we demonstrate that γ-secretase is localized at synapses and regulates spine formation. We identify EphA4, one of the Ephrin receptor family members, as a substrate of γ-secretase, and find that EphA4 processing is enhanced by synaptic activity. Moreover, overexpression of EphA4 intracellular domain increases the number of dendritic spines by activating the Rac signaling pathway. These findings reveal a function for EphA4-mediated intracellular signaling in the morphogenesis of dendritic spines and suggest that the processing of EphA4 by γ-secretase affects the pathogenesis of Alzheimer's disease

    Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis

    No full text
    Complement component 5 (C5), an important molecule in the complement cascade, blockade by antibodies shows clinical efficacy in treating complement-mediated disorders. However, insufficient blockading induced by single-nucleotide polymorphisms in the C5 protein or frequent development of “breakthrough” intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria treated with eculizumab have been reported. Herein, we developed a lipid nanoparticle (LNP)-formulated siRNA targeting C5 that was efficiently delivered to the liver and silenced C5 expression. We identified a potent C5-siRNA with an in vitro IC50 of 420 pM and in vivo ED50 of 0.017 mg/kg following a single administration. Single or repeated administrations of the LNP-formulated C5-siRNA allowed robust and durable suppression of liver C5 expression in mice. Complement C5 silencing ameliorated C5b-dependent anti-acetylcholine receptor antibody-induced myasthenia gravis and C5a-dependent collagen-induced arthritis symptoms. Similarly, in nonhuman primates, a single administration of C5-siRNA/LNP-induced dose-dependent plasma C5 suppression and concomitantly inhibited serum complement activity; complement activity recovered to the pre-treatment levels at 65 days post administration, thus indicating that the complement activity can be controlled for a specific period. Our findings provide the foundation for further developing C5-siRNA delivered via LNPs as a potential therapeutic for complement-mediated diseases
    corecore