16 research outputs found

    Regulation of TGF-β1-Induced Pro-Apoptotic Signaling by Growth Factor Receptors and Extracellular Matrix Receptor Integrins in the Liver

    Get PDF
    Hepatocellular carcinoma (HCC) often arises from chronically diseased livers. Persistent liver inflammation causes the accumulation of excessive extracellular matrix (ECM) proteins and impairs the liver function, finally leading to the development of HCC. A pleiotropic cytokine, transforming growth factor (TGF)-β1, plays critical roles throughout the process of fibrogenesis and hepatocarcinogenesis. In the liver, TGF-β1 inhibits the proliferation of hepatocytes and stimulates the production of ECM from hepatic stellate cells (HSCs) to maintain tissue homeostasis. During disease progression, both growth factors/cytokines and the ECM alter the TGF-β1 signals by modifying the phosphorylation of Smad proteins at their C-terminal and linker regions. TGF-β1 stimulates the expression of integrins, cellular receptors for ECM, along with an increase in ECM accumulation. The activation of integrins by the ECM modulates the response to TGF-β1 in hepatic cells, resulting in their resistance to TGF-β1-induced growth suppression in hepatocytes and the sustained production of ECM proteins in activated HSCs/myofibroblasts. Both growth factor receptors and integrins modify the expression and/or functions of the downstream effectors of TGF-β1, resulting in the escape of hepatocytes from TGF-β1-induced apoptosis. Recent studies have revealed that the alterations of Smad phosphorylation that occur as the results of the crosstalk between TGF-β1, growth factors and integrins could change the nature of TGF-β1 signals from tumor suppression to promotion. Therefore, the modification of Smad phosphorylation could be an attractive target for the prevention and/or treatment of HCC

    Regulation of tumor suppressor PDCD4 by novel protein kinase C isoforms

    Get PDF
    AbstractTransforming growth factor-β1 (TGF-β1) induces apoptosis in normal hepatocytes and hepatoma cells. PDCD4 is involved in TGF-β1-induced apoptosis via the Smad pathway. The tumor promoter 12-O-tetradecanoylphorbor-13-acetate (TPA), a protein kinase C stimulator, inhibits TGF-β1-induced apoptosis. However, the mechanisms of TPA action on PDCD4 expression remain to be elucidated. Therefore. the regulatory mechanism of PDCD4 expression by PKC was investigated. The treatment of the human hepatoma cell line, Huh7 with TPA suppressed PDCD4 protein expression and TGF-β1 failed to increase the PDCD4 protein expression. PKC inhibitors Ro-31-8425 or bisindolylmaleimide-1-hydrocholoride (pan-PKC inhibitors) and rottlerin (PKCδ inhibitor), but not Go6976 (PKCα inhibitor), enhanced the induction of PDCD4 protein by TGF-β1. Furthermore, siRNA-mediated knockdown of PKCδ and ε, but not PKCα, augmented the TGF-β1-stimulated PDCD4 protein expression. However, TPA or pan-PKC inhibitor did not alter the PDCD4 mRNA expression either under basal- and TGF-β1-treated conditions. The down-regulation of PDCD4 by TPA was restored by treatment with the proteasome inhibitor MG132. These data suggest that two isoforms of PKCs are involved in the regulation of the PDCD4 protein expression related to the proteasomal degradation pathway

    PDCD4 Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression

    Get PDF
    While the over-expression of tumor suppressor programmed cell death 4 (PDCD4) induces apoptosis, it was recently shown that PDCD4 knockdown also induced apoptosis. In this study, we examined the cell cycle regulators whose activation is affected by PDCD4 knockdown to investigate the contribution of PDCD4 to cell cycle regulation in three types of hepatoma cells: HepG2, Huh7 (mutant p53 and p16-deficient), and Hep3B (p53- and Rb-deficient). PDCD4 knockdown suppressed cell growth in all three cell lines by inhibiting Rb phosphorylation via down-regulating the expression of Rb itself and CDKs, which phosphorylate Rb, and up-regulating the expression of the CDK inhibitor p21 through a p53-independent pathway. We also found that apoptosis was induced in a p53-dependent manner in PDCD4 knockdown HepG2 cells (p53+), although the mechanism of cell death in PDCD4 knockdown Hep3B cells (p53-) was different. Furthermore, PDCD4 knockdown induced cellular senescence characterized by β-galactosidase staining, and p21 knockdown rescued the senescence and cell death as well as the inhibition of Rb phosphorylation induced by PDCD4 knockdown. Thus, PDCD4 is an important cell cycle regulator of hepatoma cells and may be a promising therapeutic target for the treatment of hepatocellular carcinoma

    Control Mechanisms of the Tumor Suppressor PDCD4: Expression and Functions

    No full text
    PDCD4 is a novel tumor suppressor to show multi-functions inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. PDCD4 protein binds to the translation initiation factor eIF4A, some transcription factors, and many other factors and modulates the function of the binding partners. PDCD4 downregulation stimulates and PDCD4 upregulation inhibits the TPA-induced transformation of cells. However, PDCD4 gene mutations have not been found in tumor cells but gene expression was post transcriptionally downregulated by micro environmental factors such as growth factors and interleukins. In this review, we focus on the suppression mechanisms of PDCD4 protein that is induced by the tumor promotors EGF and TPA, and in the inflammatory conditions. PDCD4-protein is phosphorylated at 2 serines in the SCFβTRCP ubiquitin ligase binding sequences via EGF and/or TPA induced signaling pathway, ubiquitinated, by the ubiquitin ligase and degraded in the proteasome system. The PDCD4 protein synthesis is inhibited by microRNAs including miR21
    corecore