413 research outputs found
Relaxation Dynamics of Photocarriers in One-Dimensional Mott Insulators Coupled to Phonons
We examine recombination processes of photocarriers in one-dimensional Mott
insulators coupled to phonons. Performing density matrix renormalization group
calculations, we find that, even for small electron-phonon coupling, many
phonons are generated dynamically, which cause initial relaxation process after
the irradiation. At the same time, spin-charge coupling coming from mixing of
high- and low-energy states by the irradiation is suppressed. We discuss
differences between Mott and band insulators in terms of relaxation dynamics.Comment: 5 pages, 3 figure
Anomalous temperature dependence of the single-particle spectrum in the organic conductor TTF-TCNQ
The angle-resolved photoemission spectrum of the organic conductor TTF-TCNQ
exhibits an unusual transfer of spectral weight over a wide energy range for
temperatures 60K<T<260K. In order to investigate the origin of this finding,
here we report numerical results on the single-particle spectral weight
A(k,omega) for the one-dimensional (1D) Hubbard model and, in addition, for the
1D extended Hubbard and the 1D Hubbard-Holstein models. Comparisons with the
photoemission data suggest that the 1D Hubbard model is not sufficient for
explaining the unusual T dependence, and the long-range part of the Coulomb
repulsion also needs to be included.Comment: 4 pages, 4 figure
Temperature dependence of spinon and holon excitations in one-dimensional Mott insulators
Motivated by the recent angle-resolved photoemission spectroscopy (ARPES)
measurements on one-dimensional Mott insulators, SrCuO and
NaVO, we examine the single-particle spectral weight
of the one-dimensional (1D) Hubbard model at half-filling. We are particularly
interested in the temperature dependence of the spinon and holon excitations.
For this reason, we have performed the dynamical density matrix renormalization
group and determinantal quantum Monte Carlo (QMC) calculations for the
single-particle spectral weight of the 1D Hubbard model. In the QMC data, the
spinon and holon branches become observable at temperatures where the
short-range antiferromagnetic correlations develop. At these temperatures, the
spinon branch grows rapidly. In the light of the numerical results, we discuss
the spinon and holon branches observed by the ARPES experiments on
SrCuO. These numerical results are also in agreement with the
temperature dependence of the ARPES results on NaVO.Comment: 8 pages, 8 figure
Dynamical density matrix renormalization group study of photoexcited states in one-dimensional Mott insulators
科研費報告書収録論文(課題番号:16340097/研究代表者:前川禎通/スピン及び軌道による量子伝導の制御理論)47
Electron-phonon coupling and spin-charge separation in one-dimensional Mott insulators
We examine the single-particle excitation spectrum in the one-dimensional
Hubbard-Holstein model at half-filling by performing the dynamical density
matrix renormalization group (DDMRG) calculation. The DDMRG results are
interpreted as superposition of spectra for a spinless carrier dressed with
phonons. The superposition is a consequence of robustness of the spin-charge
separation against electron-phonon coupling. The separation is in contrast to
the coupling between phonon and spin degrees of freedom in two-dimensional
systems. We discuss implication of the results of the recent angle-resolved
photoemission spectroscopy measurements on SrCuO.Comment: 5 pages, 4 figures. submitted to the Physical Review Letter
Fluctuation Theorem with Information Exchange: Role of Correlations in Stochastic Thermodynamics
We establish the fluctuation theorem in the presence of information exchange
between a nonequilibrium system and other degrees of freedom such as an
observer and a feedback controller, where the amount of information exchange is
added to the entropy production. The resulting generalized second law sets the
fundamental limit of energy dissipation and energy cost during the information
exchange. Our results apply not only to feedback-controlled processes but also
to a much broader class of information exchanges, and provides a unified
framework of nonequilibrium thermodynamics of measurement and feedback control.Comment: To appear in PR
Diagnostic Genesis Features of Au-Ag Selenide-Telluride Mineralization of Western Java Deposits
DOI: 10.17014/ijog.3.1.67-76The ore mineralogy of the westernmost part of West Java such as Pongkor, Cibaliung, Cikidang, Cikotok, and Cirotan are characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, whereas the eastern part of West Java including Arinem and Cineam deposits are dominated by silver-gold tellurides. Mineralogy of Se-type deposits at Pongkor, Cikidang, Cibaliung, Cisungsang, and Cirotan and Te-type deposits at Arinem and Cineam shows their different geochemical characteristics. Mineralogical and geochemical differences can be explained by variation of physico-chemical conditions that existed during gold-silver deposition by applying the phase relation among sulfide, telluride, and selenide mineral association in the deposits. The relative values of ƒSe2(g), ƒTe(g), and ƒS2(g) control the actual presence of selenide or telluride minerals within the West Java deposits, which also depend on their concentrations in the hydrothermal fluid. Even though the concentration of selenium in the hydrothermal fluid of Te-type deposits might have been similar or even higher than that in the Se-type, early substitution of selenium in the sulfide minerals prevents its concentration in the hydrothermal fluid to the levels for precipitating selenide minerals. Therefore, early sulfide mineral deposition from reduction fluids will not increase the ƒSe2(g)/ƒS2(g) ratio to form selenide minerals in Te-type deposits of Arinem and Cineam, other than selenium-bearing sulfide mineral such as Se-bearing galena or Se-bearing pyrargyrite-proustite
Epithermal Gold-Silver Deposits in Western Java, Indonesia: Gold-Silver Selenide-Telluride Mineralization
DOI: 10.17014/ijog.v1i2.180The gold-silver ores of western Java reflect a major metallogenic event during the Miocene-Pliocene and Pliocene ages. Mineralogically, the deposits can be divided into two types i.e. Se- and Te-type deposits with some different characteristic features. The objective of the present research is to summarize the mineralogical and geochemical characteristics of Se- and Te-type epithermal mineralization in western Java. Ore and alteration mineral assemblage, fluid inclusions, and radiogenic isotope studies were undertaken in some deposits in western Java combined with literature studies from previous authors. Ore mineralogy of some deposits from western Java such as Pongkor, Cibaliung, Cikidang, Cisungsang, Cirotan, Arinem, and Cineam shows slightly different characteristics as those are divided into Se- and Te-types deposits. The ore mineralogy of the westernmost of west Java region such as Pongkor, Cibaliung, Cikidang, Cisungsang, and Cirotan is characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, while to the eastern part of West Java such as Arinem and Cineam deposits are dominated by silver-gold tellurides. The average formation temperatures measured from fluid inclusions of quartz associated with ore are in the range of 170 – 220°C with average salinity of less than 1 wt% NaClequiv for Se-type and 190 – 270°C with average salinity of ~2 wt% NaClequiv for Te-type
Estimation of fire-induced carbon emissions from Equatorial Asia in 2015 using in situ aircraft and ship observations
Inverse analysis was used to estimate fire carbon
emissions in Equatorial Asia induced by the big El Niño event in 2015.
This inverse analysis is unique because it extensively used high-precision
atmospheric mole fraction data of carbon dioxide (CO2) from the
commercial aircraft observation project CONTRAIL. Through comparisons with
independent shipboard observations, especially carbon monoxide (CO) data,
the validity of the estimated fire-induced carbon emissions was demonstrated.
The best estimate, which used both aircraft and shipboard CO2
observations, indicated 273 Tg C for fire emissions from
September–October 2015. This 2-month period accounts for 75 % of the annual total fire emissions and 45 % of the annual total net carbon flux within the region, indicating that fire emissions are a dominant driving force of interannual variations of carbon fluxes in Equatorial Asia.
Several sensitivity experiments demonstrated that aircraft observations
could measure fire signals, though they showed a certain degree of
sensitivity to prior fire-emission data. The inversions coherently estimated
smaller fire emissions than the prior data, partially because of the small
contribution of peatland fires indicated by enhancement ratios of CO and
CO2 observed by the ship. In future warmer climate conditions,
Equatorial Asia may experience more severe droughts, which risks releasing a
large amount of carbon into the atmosphere. Therefore, the continuation of
aircraft and shipboard observations is fruitful for reliable monitoring of
carbon fluxes in Equatorial Asia.</p
- …