83 research outputs found
Selective Gene Expression by Postnatal Electroporation during Olfactory Interneuron Neurogenesis
Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis
The JurassicâCretaceous depositional and tectonic evolution of the southernwestern margin of the Neotethys Ocean, Northern Oman and United Arab Emirates
The concept that the autochthonous, parautochthonous and allochthonous PermianâCretaceous sequences in the United Arab Emirates (UAE) and Oman record the transition from platform, slope to basin sedimentation within the southern part of Neotethys has been fundamental to the interpretation of the geological history of the region. The results of a major geological mapping programme of the UAE, carried out by the British Geological Survey for the Federal Government of the UAE, coupled with the detailed examination of key sections within northern Oman has led to a re-evaluation of the geological evolution of this region. This detailed study has led to a greater appreciation of the sedimentology and depositional setting of the sediments laid down along the northeastern Arabian continental margin during the Jurassic to Cretaceous, allowing a more refined model of Neotethys Ocean basin evolution to be established. The model charts the progressive breakup of the Arabian continental margin and closure of Neotethys during the mid to late Cretaceous and is divided into three main stages: Stage 1âInitial rifting and formation of the Neotethys Ocean, followed by a prolonged period of stable, passive margin sedimentation which extended from the Permian to Late Jurassic times; Stage 2âUplift and erosion of the shelf margin during the Late Jurassic to Early Cretaceous, coincident with increased carbonate-clastic sedimentation in the outer ramp, distal slope and basinal areas; Stage 3âIncreased instability during the Late Cretaceous leading to the breakup of the platform margin and foreland basin sedimentation accompanying the obduction of the Oman-UAE ophiolite. Data obtained for the upper part of the platform and platform margin to slope successions has revealed that the topography of the âshelfâ-slope-basinal margin was more subdued than previously thought, with this more gentle ramp margin morphology persisting until early to mid-Cretaceous times when the platform margin started to become unstable during ophiolite obduction. The thrust-repeated allochthonous sedimentary rocks of the Hamrat Duru Group were deposited on the outer platform margin/lower slope rise to basinal plain of this basin margin and includes the dismembered remains of two turbidite fan systems which fed carbonate-rich detritus into deeper parts of the ocean. A re-evaluation of the chert-rich sequences, previously equated with deposition on the abyssal plain of Neotethys, has led to the conclusion that they may record sedimentation at a much shallower level within a starved ocean basin, possibly in a mid-ramp (above storm wave base) to outer ramp setting. A marked change in basin dynamics occurred during the mid-Cretaceous leading to the development of a shallow ramp basin margin in Oman with terrestrial to shallow marine sedimentary rocks interdigitating with red siliceous mudstones. By contrast, the contemporaneous succession in the Dibba Zone of the UAE indicates considerable instability on a steep shelf break. This instability is recorded by the presence of several major olistostrome deposits within the Aruma Group of the UAE which are thought to have been generated in advance of the rapidly obducting Oman-UAE ophiolite
Pathogenesis of Henoch-Schönlein purpura nephritis
The severity of renal involvement is the major factor determining the long-term outcome of children with Henoch-Schönlein purpura (HSP) nephritis (HSPN). Approximately 40% children with HSP develop nephritis, usually within 4 to 6 weeks after the initial onset of the typical purpuric rashes. Although the pathogenetic mechanisms are still not fully delineated, several studies suggest that galactose-deficient IgA1 (Gd-IgA1) is recognized by anti-glycan antibodies, leading to the formation of the circulating immune complexes and their mesangial deposition that induce renal injury in HSPN
Measuring 129Xe transfer across the bloodâbrain barrier using MR spectroscopy
Purpose
This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129Xe dissolved in cerebral blood under exchange with depolarized 129Xe dissolved in gray matter under equilibrium of concentration.
Theory and Methods
Timeâresolved MR spectra of hyperpolarized 129Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129Xe T1 dependence upon blood oxygenation was applied. 129Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model.
Results
For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14.
Conclusion
In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129Xe from cerebral blood to gray matter in the human brain
Marine fish production and marketing for a Chinese food market: A transaction cost perspective
From a transaction cost perspective, this paper shows how the tradition of consuming marine fish by the majority of Hong Kong's Chinese citizens has shaped the means and modes of marketing seafood in Hong Kong. It is argued that consumer preferences stimulate aquaculture as a non-open access measure to bypass state fish marketing regulations. This has resulted in two outcomes. First, the transaction cost savings on metering output quantity and quality under private property have led not only to the collapse of the state monopoly on marine fish marketing, but also to the emergence of the (then new but) currently popular kind of Chinese seafood restaurant in Hong Kong. Second, consumer preferences for variety have shaped the form of coordination between the producer and the consumer. The advantage of market coordination has led to the emergence of a system of wholesaling and retailing rather than vertical integration. Issues concerning the emergence of Hong Kong as a regional live marine fish production and trading centre are discussed in terms of the contribution of local mariculture to sustainable development. Copyright © 2005 IAAEM.link_to_subscribed_fulltex
- âŠ