944 research outputs found

    The Reionization History and Early Metal Enrichment inferred from the Gamma-Ray Burst Rate

    Get PDF
    Based on the gamma-ray burst (GRB) event rate at redshifts of 4z124 \leq z \leq 12, which is assessed by the spectral peak energy-to-luminosity relation recently found by Yonetoku et al., we observationally derive the star formation rate (SFR) for Pop III stars in a high redshift universe. As a result, we find that Pop III stars could form continuously at 4z124 \leq z \leq 12. Using the derived Pop III SFR, we attempt to estimate the ultraviolet (UV) photon emission rate at 7z127 \leq z \leq 12 in which redshift range no observational information has been hitherto obtained on ionizing radiation intensity. We find that the UV emissivity at 7z127 \leq z \leq 12 can make a noticeable contribution to the early reionization. The maximal emissivity is higher than the level required to keep ionizing the intergalactic matter at 7z127 \leq z \leq 12. However, if the escape fraction of ionizing photons from Pop III objects is smaller than 10%, then the IGM can be neutralized at some redshift, which may lead to the double reionization. As for the enrichment, the ejection of all metals synthesized in Pop III objects is marginally consistent with the IGM metallicity, although the confinement of metals in Pop III objects can reduce the enrichment significantly.Comment: 12 pages, 2 figures, ApJL accepte

    Novel phase transition and the pressure effect in YbFe2Al10-type CeT2Al10 (T=Fe, Ru, Os)

    Full text link
    We have succeeded in growing single crystals of orthorhombic CeT2Al10 (T=Fe, Ru, Os) by Al self-flux method for the first time, and measured the electrical resistivity at pressures up to 8 GPa, the magnetic susceptibility and specific heat at ambient pressure. These results indicate that CeT2Al10 belongs to the heavy fermion compounds. CeRu2Al10 and CeOs2Al10 show a similar phase transition at T0 = 27.3 and 28.7 K, respectively. The temperature dependences in the ordered phases are well described by the thermally activated form, suggesting that partial gap opens over the Fermi surfaces below T0. When pressure is applied to CeRu2Al10, T0 disappears suddenly between 3 and 4 GPa, and CeRu2Al10 turns into a Kondo insulator, followed by a metal. The similarity of CeT2Al10 under respective pressures suggests a scaling relation by some parameter controlling the unusual physics in these compounds.Comment: 9 pages, 5 figure

    NMR and NQR study of pressure-induced superconductivity and the origin of critical-temperature enhancement in the spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41}

    Get PDF
    Pressure-induced superconductivity was studied for a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} using nuclear magnetic resonance (NMR) under pressures up to the optimal pressure 3.8 GPa. Pressure application leads to a transitional change from a spin-gapped state to a Fermi-liquid state at temperatures higher than TcT_c. The relaxation rate 1/T11/T_1 shows activated-type behavior at an onset pressure, whereas Korringa-like behavior becomes predominant at the optimal pressure, suggesting that an increase in the density of states (DOS) at the Fermi energy leads to enhancement of TcT_c. Nuclear quadrupole resonance (NQR) spectra suggest that pressure application causes transfer of holes from the chain to the ladder sites. The transfer of holes increases DOS below the optimal pressure. A dome-shaped TcT_c versus pressure curve arises from naive balance between the transfer of holes and broadening of the band width

    Kondo effect in CeXc_{c} (Xc_{c}=S, Se, Te) studied by electrical resistivity under high pressure

    Get PDF
    We have measured the electrical resistivity of cerium monochalcogenices, CeS, CeSe, and CeTe, under high pressures up to 8 GPa. Pressure dependences of the antiferromagnetic ordering temperature TNT_{N}, crystal field splitting, and the lnT\ln T anomaly of the Kondo effect have been studied to cover the whole region from the magnetic ordering regime at low pressure to the Fermi liquid regime at high pressure. TNT_{N} initially increases with increasing pressure, and starts to decrease at high pressure as expected from the Doniach's diagram. Simultaneously, the lnT\ln T behavior in the resistivity is enhanced, indicating the enhancement of the Kondo effect by pressure. It is also characteristic in CeXc_{c} that the crystal field splitting rapidly decreases at a common rate of 12.2-12.2 K/GPa. This leads to the increase in the degeneracy of the ff state and further enhancement of the Kondo effect. It is shown that the pressure dependent degeneracy of the ff state is a key factor to understand the pressure dependence of TNT_{N}, Kondo effect, magnetoresistance, and the peak structure in the temperature dependence of resistivity.Comment: 9 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp

    Structure and magnetism in nanocrystalline Ca(La)B6_6 films

    Full text link
    Nanocrystalline films of La-doped CaB6_6 have been fabricated by using a rf-magnetron sputtering. Lattice expansion of up to 6% with respect to the bulk value was observed along the direction perpendicular to the film plane, which arises from the trapping of Ar gas into the film. Large ferromagnetic moment of 3 ~ 4 Bohr magneton per La has been observed in some La-doped films only when the lattice expansion rate is larger than 2.5%.Comment: 2 pages, 2 figures, to appear in J. Magn. Magn. Mate

    Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    Get PDF
    AbstractTwo novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging
    corecore