702 research outputs found

    Structure and magnetism in nanocrystalline Ca(La)B6_6 films

    Full text link
    Nanocrystalline films of La-doped CaB6_6 have been fabricated by using a rf-magnetron sputtering. Lattice expansion of up to 6% with respect to the bulk value was observed along the direction perpendicular to the film plane, which arises from the trapping of Ar gas into the film. Large ferromagnetic moment of 3 ~ 4 Bohr magneton per La has been observed in some La-doped films only when the lattice expansion rate is larger than 2.5%.Comment: 2 pages, 2 figures, to appear in J. Magn. Magn. Mate

    Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    Get PDF
    AbstractTwo novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging

    Novel phase transition and the pressure effect in YbFe2Al10-type CeT2Al10 (T=Fe, Ru, Os)

    Full text link
    We have succeeded in growing single crystals of orthorhombic CeT2Al10 (T=Fe, Ru, Os) by Al self-flux method for the first time, and measured the electrical resistivity at pressures up to 8 GPa, the magnetic susceptibility and specific heat at ambient pressure. These results indicate that CeT2Al10 belongs to the heavy fermion compounds. CeRu2Al10 and CeOs2Al10 show a similar phase transition at T0 = 27.3 and 28.7 K, respectively. The temperature dependences in the ordered phases are well described by the thermally activated form, suggesting that partial gap opens over the Fermi surfaces below T0. When pressure is applied to CeRu2Al10, T0 disappears suddenly between 3 and 4 GPa, and CeRu2Al10 turns into a Kondo insulator, followed by a metal. The similarity of CeT2Al10 under respective pressures suggests a scaling relation by some parameter controlling the unusual physics in these compounds.Comment: 9 pages, 5 figure

    Kondo effect in CeXc_{c} (Xc_{c}=S, Se, Te) studied by electrical resistivity under high pressure

    Get PDF
    We have measured the electrical resistivity of cerium monochalcogenices, CeS, CeSe, and CeTe, under high pressures up to 8 GPa. Pressure dependences of the antiferromagnetic ordering temperature TNT_{N}, crystal field splitting, and the lnT\ln T anomaly of the Kondo effect have been studied to cover the whole region from the magnetic ordering regime at low pressure to the Fermi liquid regime at high pressure. TNT_{N} initially increases with increasing pressure, and starts to decrease at high pressure as expected from the Doniach's diagram. Simultaneously, the lnT\ln T behavior in the resistivity is enhanced, indicating the enhancement of the Kondo effect by pressure. It is also characteristic in CeXc_{c} that the crystal field splitting rapidly decreases at a common rate of 12.2-12.2 K/GPa. This leads to the increase in the degeneracy of the ff state and further enhancement of the Kondo effect. It is shown that the pressure dependent degeneracy of the ff state is a key factor to understand the pressure dependence of TNT_{N}, Kondo effect, magnetoresistance, and the peak structure in the temperature dependence of resistivity.Comment: 9 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp

    Ionization Source of a Minor-axis Cloud in the Outer Halo of M82

    Get PDF
    The M82 `cap' is a gas cloud at a projected radius of 11.6 kpc along the minor axis of this well known superwind source. The cap has been detected in optical line emission and X-ray emission and therefore provides an important probe of the wind energetics. In order to investigate the ionization source of the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on the Subaru Telescope. Deep continuum, Ha, [NII]6583/Ha, and [SII]6716,6731/Ha maps were obtained with sub-arcsecond resolution. The superior spatial resolution compared to earlier studies reveals a number of bright Ha emitting clouds within the cap. The emission line widths (< 100 km s^-1 FWHM) and line ratios in the newly identified knots are most reasonably explained by slow to moderate shocks velocities (v_shock = 40--80 km s^-1) driven by a fast wind into dense clouds. The momentum input from the M82 nuclear starburst region is enough to produce the observed shock. Consequently, earlier claims of photoionization by the central starburst are ruled out because they cannot explain the observed fluxes of the densest knots unless the UV escape fraction is very high (f_esc > 60%), i.e., an order of magnitude higher than observed in dwarf galaxies to date. Using these results, we discuss the evolutionary history of the M82 superwind. Future UV/X-ray surveys are expected to confirm that the temperature of the gas is consistent with our moderate shock model.Comment: 7 pages, 5 figures, 2 tables; Accepted for publication in Ap

    Galactic Wind in the Nearby Starburst Galaxy NGC 253 Observed with the Kyoto3DII Fabry-Perot Mode

    Full text link
    We have observed the central region of the nearby starburst galaxy NGC 253 with the Kyoto Tridimensional Spectrograph II (Kyoto3DII) Fabry-Perot mode in order to investigate the properties of its galactic wind. Since this galaxy has a large inclination, it is easy to observe its galactic wind. We produced the Ha, [N II]6583, and [S II]6716,6731 images, as well as those line ratio maps. The [N II]/Ha ratio in the galactic wind region is larger than those in H II regions in the galactic disk. The [N II]/Ha ratio in the southeastern filament, a part of the galactic wind, is the largest and reaches about 1.5. These large [N II]/Ha ratios are explained by shock ionization/excitation. Using the [S II]/Ha ratio map, we spatially separate the galactic wind region from the starburst region. The kinetic energy of the galactic wind can be sufficiently supplied by supernovae in a starburst region in the galactic center. The shape of the galactic wind and the line ratio maps are non-axisymmetric about the galactic minor axis, which is also seen in M82. In the [N II]6583/[S II]6716,6731 map, the positions with large ratios coincide with the positions of star clusters found in the Hubble Space Telescope (HST) observation. This means that intense star formation causes strong nitrogen enrichment in these regions. Our unique data of the line ratio maps including [S II] lines have demonstrated their effectiveness for clearly distinguishing between shocked gas regions and starburst regions, determining the extent of galactic wind and its mass and kinetic energy, and discovering regions with enhanced nitrogen abundance.Comment: 22 pages, 5 figures, 1 table, accepted for publication in Ap
    corecore