1,579 research outputs found

    DNA helicase II of Escherichia coli. Characterization of the single-stranded DNA-dependent NTPase and helicase activities

    Get PDF
    Escherichia coli helicase II has been purified to near homogeneity from cells harboring a multicopy plasmid containing the structural gene for helicase II, uvrD. In this paper a detailed description of the single-stranded DNA-dependent nucleoside 5'-triphosphatase and helicase reactions catalyzed by helicase II is presented. The results of this study suggest that nucleoside 5'-triphosphate hydrolysis provides the energy required for translocation of the enzyme along single-stranded DNA. Measurements of the rate of ATP hydrolysis using a variety of single-stranded DNAs of known structure and length suggest a processive translocation mechanism for helicase II. Single-stranded DNA coated with either Escherichia coli single-stranded DNA binding protein (SSB) or bacteriophage T4 gene 32 protein fails to support helicase II ATPase activity. Moreover, helicase II is apparently unable to displace a molecule of bound SSB protein from single-stranded DNA when it is encountered in the process of translocation along a single-stranded DNA effector. The helicase reaction has been characterized using an in vitro strand displacement helicase assay. The helicase reaction requires concomitant nucleoside 5'-triphosphatase hydrolysis that is satisfied by the hydrolysis of either rATP or dATP. As the length of duplex DNA present in the partial duplex helicase substrate is increased from 71 base pairs to 343 base pairs, the fraction of duplex DNA molecules that are unwound by helicase II decreases in the absence of any accessory proteins. However, the total number of base pairs of duplex DNA unwound depends primarily on the amount of enzyme added to the helicase reaction and not on the length of the duplex DNA present in the partial duplex DNA substrate. These data suggest the number of base pairs of duplex DNA unwound is directly proportional with the concentration of helicase II in the reaction mixture. In addition, the rate of the unwinding reaction is independent of the length of the duplex DNA available for unwinding. Helicase II has been shown to dissociate from single-stranded DNA molecules infrequently acting as an ATPase. However, the enzyme dissociates from partial duplex helicase substrates more frequently. This suggests a more distributive reaction mechanism on duplex DNA than was observed on single-stranded DNA substrates. The fraction of 343-base pair partial duplex DNA molecules unwound by helicase II can be increased by the addition of appropriate concentrations of E. coli SSB to the reaction. This suggests that helicase II and SSB may act in a concerted reaction to unwind duplex DNA

    Disruption of a topoisomerase-DNA cleavage complex by a DNA helicase.

    Full text link

    Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction.

    Get PDF
    Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis

    Escherichia coli DNA helicase I catalyzes a sequence-specific cleavage/ligation reaction at the F plasmid origin of transfer.

    Get PDF
    Recent studies have shown that the Escherichia coli F plasmid-encoded traI gene product (TraIp), also known as DNA helicase I, catalyzes the formation of the site- and strand-specific nick that initiates F plasmid DNA transfer. Scission of the phosphodiester bond at the nic site within the origin of transfer (oriT) is accompanied by the covalent attachment of TraIp to the 5'-phosphate of the nicked DNA strand. This mechanism suggests that TraIp may also be capable of catalyzing a DNA ligation reaction using the energy stored in the protein-DNA intermediate. To test this possibility, an in vitro assay was designed that utilized short single-stranded DNA oligonucleotides of different lengths derived from the region within oriT that spanned the nic site. Purified TraIp was capable of efficiently cleaving single-stranded DNA that contained a nic site, and upon cleavage, the protein became covalently linked to the 5'-end of the nic site. When TraIp was incubated with two oligonucleotides of different length that contained the nic site, there was formation of novel recombinant products resulting from a TraIp-catalyzed cleavage/ligation reaction. Furthermore, the cleavage and ligation reactions were both sequence-specific. These data suggest that TraIp plays an important role in the initiation and termination of conjugative DNA transfer

    Purification and characterization of a DNA helicase from Saccharomyces cerevisiae

    Get PDF
    A novel DNA helicase, scHelI, has been purified from whole cell extracts of Saccharomyces cerevisiae using biochemical assays to monitor the fractionation. The enzyme unwinds partial duplex DNA substrates, as long as 343 base pairs in length, in a reaction that is dependent on either ATP or dATP hydrolysis. scHelI also catalyzes a single-stranded DNA-dependent ATP hydrolysis reaction; the apparent Km for ATP is 325 microM. The unwinding reaction on circular partial duplex substrates is biphasic, with a fast component occurring within 5 min of the initiation of the reaction and a slow component continuing to 60 min. This is in contrast to the ATP hydrolysis reaction, which exhibits linear kinetics for 60 min. The direction of the unwinding reaction is 5' to 3' with respect to the strand of DNA on which the enzyme is bound. The unwinding reaction is strongly stimulated by the addition of Escherichia coli single-stranded DNA-binding protein when long partial duplex substrates are used. The enzymatic activity of scHelI copurifies with a polypeptide of 135 kDa as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The polypeptide sediments as a monomer in a glycerol gradient in the presence of 0.2 M NaCl

    Helicase on DNA: A Phase coexistence based mechanism

    Get PDF
    We propose a phase coexistence based mechanism for activity of helicases, ubiquitous enzymes that unwind double stranded DNA. The helicase-DNA complex constitutes a fixed-stretch ensemble that entails a coexistence of domains of zipped and unzipped phases of DNA, separated by a domain wall. The motor action of the helicase leads to a change in the position of the fixed constraint thereby shifting the domain wall on dsDNA. We associate this off-equilibrium domain wall motion with the unzipping activity of helicase. We show that this proposal gives a clear and consistent explanation of the main observed features of helicases.Comment: Revtex4. 5 pages. 4 figures. Published versio

    Materials Research in Reduced Gravity 2020

    Get PDF

    Inhibition of DNA helicase II unwinding and ATPase activities by DNA-interacting ligands : kinetics and specificity

    Get PDF
    Although DNA helicases play important roles in the processing of DNA, little is known about the effects of DNA-interacting ligands on these helicases. Therefore, the effects of a wide variety of DNA-binding ligands on the unwinding and ATPase reactions catalyzed by Escherichia coli DMA helicase II were examined. DNA minor groove binders and simple DNA intercalators did not inhibit helicase II. However, DNA intercalators, such as mitoxantrone and nogalamycin, which position functionalities in the major groove upon binding duplex DNA, were potent inhibitors of helicase II.Although DNA helicases play important roles in the processing of DNA, little is known about the effects of DNA-interacting ligands on these helicases. Therefore, the effects of a wide variety of DNA-binding ligands on the unwinding and ATPase reactions catalyzed by Escherichia coli DMA helicase II were examined. DNA minor groove binders and simple DNA intercalators did not inhibit helicase II. However, DNA intercalators, such as mitoxantrone and nogalamycin, which position functionalities in the major groove upon binding duplex DNA, were potent inhibitors of helicase II

    RAD3 protein of Saccharomyces cerevisiae is a DNA helicase.

    Get PDF
    The Saccharomyces cerevisiae RAD3 gene, which is required for cell viability and excision repair of damaged DNA, encodes an 89-kDa protein that has a single-stranded DNA-dependent ATPase activity. We now show that the RAD3 protein also possesses a helicase activity that unwinds duplex regions in DNA substrates constructed by annealing DNA fragments of 71-851 nucleotides to circular, single-stranded M13 DNA. The DNA helicase activity is dependent on the hydrolysis of ATP, has a pH optimum of approximately 5.6, and is inhibited by antibodies raised against a truncated RAD3 protein produced in Escherichia coli. The RAD3 helicase translocates along single-stranded DNA in the 5'----3' direction. The direction of RAD3 helicase movement is consistent with the possibility that it unwinds DNA duplexes in advance of the replication fork during DNA replication
    • …
    corecore