41 research outputs found
Two Young Planetary Systems around Field Stars with Ages between 20 and 320 Myr from TESS
Planets around young stars trace the early evolution of planetary systems. We report the discovery and validation of two planetary systems with ages <∼300Myr from observations by the Transiting Exoplanet Survey Satellite (TESS). The 40 V320 Myr old G star TOI-251 hosts a 2.74+0.18-0.18 mini-Neptune with a 4.94 day period. The 20-160 Myr old K star TOI-942 hosts a system of inflated Neptune-sized planets, with TOI-942b orbiting in a period of 4.32 days with a radius of 4.81+0.20-0.20 and TOI-942c orbiting in a period of 10.16 days with a radius of 5.79-0.18+0.19 Though we cannot place either host star into a known stellar association or cluster, we can estimate their ages via their photometric and spectroscopic properties. Both stars exhibit significant photometric variability due to spot modulation, with measured rotation periods of .3.5 days. These stars also exhibit significant chromospheric activity, with age estimates from the chromospheric calcium emission lines and X-ray fluxes matching that estimated from gyrochronology. Both stars also exhibit significant lithium absorption, similar in equivalent width to well-characterized young cluster members. TESS has the potential to deliver a population of young planet-bearing field stars, contributing significantly to tracing the properties of planets as a function of their age
TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images
We present the discovery and characterization of five hot and warm Jupiters - TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) - based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R P = 1.01-1.77 R J) and have masses that range from 0.85 to 6.33 M J. The host stars of these systems have F and G spectral types (5595 ≤ T eff ≤ 6460 K) and are all relatively bright (9.5 1.7 R J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31-0.30+0.28 M J and a statistically significant, nonzero orbital eccentricity of e = 0.074-0.022+0.021. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals
TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet
Stars and planetary system
TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet
We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves
Recommended from our members