2,039 research outputs found
Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach
The bacterial Wood-Ljungdahl pathway for CO_2-reductive acetogenesis is important for the nutritional mutualism occurring between
wood-feeding insects and their hindgut microbiota. A key step in this
pathway is the reduction of CO_2 to formate, catalysed by the enzyme
formate dehydrogenase (FDH). Putative selenocysteine- (Sec) and
cysteine- (Cys) containing paralogues of hydrogenase-linked FDH (FDH_H)
have been identified in the termite gut acetogenic spirochete,
Treponema primitia, but knowledge of their relevance in the termite gut
environment remains limited. In this study, we designed degenerate PCR
primers for FDH_H genes (fdhF) and assessed fdhF diversity in insect gut
bacterial isolates and the gut microbial communities of termites and
cockroaches. The insects examined herein represent three wood-feeding
termite families, Termopsidae, Kalotermitidae and Rhinotermitidae
(phylogenetically 'lower' termite taxa); the wood-feeding roach family
Cryptocercidae (the sister taxon to termites); and the omnivorous roach
family Blattidae. Sec and Cys FDH_H variants were identified in every
wood-feeding insect but not the omnivorous roach. Of 68 novel alleles
obtained from inventories, 66 affiliated phylogenetically with enzymes
from T. primitia. These formed two subclades (37 and 29 phylotypes)
almost completely comprised of Sec-containing and Cys-containing
enzymes respectively. A gut cDNA inventory showed transcription of both
variants in the termite Zootermopsis nevadensis (family Termopsidae).
The gene patterns suggest that FDH_H enzymes are important for the
CO_2-reductive metabolism of uncultured acetogenic treponemes and imply
that the availability of selenium, a trace element, shaped microbial
gene content in the last common ancestor of dictyopteran, wood-feeding
insects, and continues to shape it to this day
Recommended from our members
Exploring Anasazi Origins: The Cedar Mesa Basketmaker II
In 1990 the Cedar Mesa Project II (CMP II) was initiated to further explore the origins of the Anasazi tradition on Cedar Mesa, southeast Utah. Research focused on the Basketmaker II occupation of the mesa. As the initial members of the Anasazi tradition, now represented by the modern Pueblo Indians, the origins of the Basketmaker II remains a topic of debate
Development of improved thermoelectric mater- ials for spacecraft applications final summary report, 29 jun. 1964 - 29 jun. 1965
Thermoelectric materials for spacecraft applications - optimization of bismuth-antimony alloys and ag-sb-fe-te-se system alloys for thermoelectric cooling in space environmen
Recommended from our members
Genome-Wide Effects of Selenium and Translational Uncoupling on Transcription in the Termite Gut Symbiont Treponema primitia
When prokaryotic cells acquire mutations, encounter translation-inhibiting substances, or experience adverse environmental conditions that limit their ability to synthesize proteins, transcription can become uncoupled from translation. Such uncoupling is known to suppress transcription of protein-encoding genes in bacteria. Here we show that the trace element selenium controls transcription of the gene for the selenocysteine-utilizing enzyme formate dehydrogenase (fdhF_Sec) through a translation-coupled mechanism in the termite gut symbiont Treponema primitia, a member of the bacterial phylum Spirochaetes. We also evaluated changes in genome-wide transcriptional patterns caused by selenium limitation and by generally uncoupling translation from transcription via antibiotic-mediated inhibition of protein synthesis. We observed that inhibiting protein synthesis in T. primitia influences transcriptional patterns in unexpected ways. In addition to suppressing transcription of certain genes, the expected consequence of inhibiting protein synthesis, we found numerous examples in which transcription of genes and operons is truncated far downstream from putative promoters, is unchanged, or is even stimulated overall. These results indicate that gene regulation in bacteria allows for specific post-initiation transcriptional responses during periods of limited protein synthesis, which may depend both on translational coupling and on unclassified intrinsic elements of protein-encoding genes.
A large body of literature demonstrates that the coupling of transcription and translation is a general and essential method by which bacteria regulate gene expression levels. However, the potential role of noncanonical amino acids in regulating transcriptional output via translational control remains, for the most part, undefined. Furthermore, the genome-wide transcriptional state in response to translational decoupling is not well quantified. The results presented here suggest that the noncanonical amino acid selenocysteine is able to tune transcription of an important metabolic gene via translational coupling. Furthermore, a genome-wide analysis reveals that transcriptional decoupling produces a wide-ranging effect and that this effect is not uniform. These results exemplify how growth conditions that impact translational processivity can rapidly feed back on transcriptional productivity of prespecified groups of genes, providing bacteria with an efficient response to environmental changes
Associations between purine metabolites and clinical symptoms in schizophrenia
Background: The antioxidant defense system, which is known to be dysregulated in schizophrenia, is closely linked to the dynamics of purine pathway. Thus, alterations in the homeostatic balance in the purine pathway may be involved in the pathophysiology of schizophrenia. Methodology/Principal Findings: Breakdown products in purine pathway were measured using high-pressure liquid chromatography coupled with a coulometric multi-electrode array system for 25 first-episode neuroleptic-naïve patients with schizophrenia at baseline and at 4-weeks following initiation of treatment with antipsychotic medication. Associations between these metabolites and clinical and neurological symptoms were examined at both time points. The ratio of uric acid and guanine measured at baseline predicted clinical improvement following four weeks of treatment with antipsychotic medication. Baseline levels of purine metabolites also predicted clinical and neurological symtpoms recorded at baseline; level of guanosine was associated with degree of clinical thought disturbance, and the ratio of xanthosine to guanosine at baseline predicted degree of impairment in the repetition and sequencing of actions. Conclusions/Significance: Findings suggest an association between optimal levels of purine byproducts and dynamics in clinical symptoms and adjustment, as well as in the integrity of sensory and motor processing. Taken together, alterations in purine catabolism may have clinical relevance in schizophrenia pathology
Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy
Hyperbolic polariton modes are highly appealing for a broad range of
applications in nanophotonics, including surfaced enhanced sensing,
sub-diffractional imaging and reconfigurable metasurfaces. Here we show that
attenuated total reflectance micro-spectroscopy (ATR) using standard
spectroscopic tools can launch hyperbolic polaritons in a Kretschmann-Raether
configuration. We measure multiple hyperbolic and dielectric modes within the
naturally hyperbolic material hexagonal boron nitride as a function of
different isotopic enrichments and flake thickness. This overcomes the
technical challenges of measurement approaches based on nanostructuring, or
scattering scanning nearfield optical microscopy. Ultimately, our ATR approach
allows us to compare the optical properties of small-scale materials prepared
by different techniques systematicallyComment: 13 pages 4 figure
Novel ultrastructures of Treponema primitia and their implications for motility
Members of the bacterial phylum Spirochaetes are generally helical cells propelled by periplasmic flagella. The spirochete Treponema primitia is interesting because of its mutualistic role in the termite gut, where it is believed to cooperate with protozoa that break down cellulose and produce H2 as a by-product. Here we report the ultrastructure of T. primitia as obtained by electron cryotomography of intact, frozen-hydrated cells. Several previously unrecognized external structures were revealed, including bowl-like objects decorating the outer membrane, arcades of hook-shaped proteins winding along the exterior and tufts of fibrils extending from the cell tips. Inside the periplasm, cone-like structures were found at each pole. Instead of the single peptidoglycan layer typical of other Gram-negative bacteria, two distinct periplasmic layers were observed. These layers formed a central open space that contained two flagella situated adjacent to each other. In some areas, the inner membrane formed flattened invaginations that protruded into the cytoplasm. High-speed light microscopic images of swimming T. primitia cells showed that cell bodies remained rigid and moved in a helical rather than planar motion. Together, these findings support the 'rolling cylinder' model for T. primitia motility that posits rotation of the protoplasmic cylinder within the outer sheath
Structure and Expression of Propanediol Utilization Microcompartments in Acetonema longum
Numerous bacteria assemble proteinaceous microcompartments to isolate certain biochemical reactions within the cytoplasm. The assembly, structure, contents, and functions of these microcompartments are active areas of research. Here we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes propanediol utilization (PDU) microcompartments when starved or grown on 1,2-propanediol (1,2-PD) or rhamnose. Electron cryotomography of intact cells revealed that PDU microcompartments are highly irregular in shape and size, similar to purified PDU microcompartments from Salmonella enterica serovar Typhimurium LT2 that were imaged previously. Homology searches identified a 20-gene operon in A. longum that contains most of the structural, enzymatic, and regulatory genes thought to be involved in PDU microcompartment assembly and function. Transcriptional data on PduU and PduC, which are major structural and enzymatic proteins, respectively, as well as imaging, indicate that PDU microcompartment synthesis is induced within 24 h of growth on 1,2-PD and after 48 h of growth on rhamnose
Thin Plate Spline Regression Model Used at Early Stages of Soybean Breeding to Control Field Spatial Variation
Yield variation observed in Soybean (Glycine max) progeny‐row yield trial (PRYT) is the final result of line genotypic merit, field spatial pattern, and experimental error. The spatial variation in field tests could confound the estimates of genetic merits. The objectives of this research were to: i) quantify non‐genetic yield variation in a soybean breeding PRYT; and ii) determine efficiency of the Thin Plate Spline Regression (TPSR) model in adjusting yield because of variation caused by field spatial pattern. The 3rd objective was to evaluate if the use of the TPSR model could improve the selection accuracy of PRYT unreplicated yield tests. Uniformity Study, Early Generation Test, and Confirmation Study were conducted. Our results indicated that large spatial variations in soybean PRYT field could be present as evaluated by the Uniformity Study conducted with two commercial lines. In this experiment, the use of the TPSR proved to be effective in reducing the error variance and the coefficient of variability, with an improvement in relative efficiency (IRE) of 37.9%. In Early Generation Tests, 2565 lines were evaluated within test‐sets along with three checks. The TPSR model also was effective in the Early Generation Tests, the IRE was 40.4%. The correlation coefficients calculated between yield estimates obtained in two-year Early Generation Tests and Confirmation Study improved by 0.21 points compared with results from the non‐TPSR experiments. The results indicated that the use of TPSR model was effective in accounting for some of the spatial variation in field tests
- …