61 research outputs found

    Relationship Between Scholastic and Health Behaviors and Reading Level in Adolescent Females

    Get PDF
    This was a study of 102 adolescent females, 12-20 years of age, presenting to a central city clinic for medical care. Participants completed an oral questionnaire that included demographics, and questions regarding scholastic history, sexual behavior, and substance use. Each subject completed the Accuracy Level Test (ALT), a reading test. The subject\u27s reading test grade level was subtracted from her appropriate grade in school to give a reading delay level (RDL). The mean reading grade level for all subjects was 6.7 ±2.6 and the average reading delay was 4.5 ±2.5 grades. Poor school attenders had greater reading delays (5.8 ±3.4 grades behind vs. 4.3 ±2.2 for good attenders

    Mutation of a Highly Conserved Arginine in Motif IV of Escherichia coli DNA Helicase II Results in an ATP-binding Defect

    Get PDF
    A site-directed mutation in motif IV of Escherichia coli DNA helicase II (UvrD) was generated to examine the functional significance of this region. The highly conserved arginine at position 284 was replaced with alanine to construct UvrD-R284A. The ability of the mutant allele to function in methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair was examined by genetic complementation assays. The R284A substitution abolished function in both DNA repair pathways. To identify the biochemical defects responsible for the loss of biological function, UvrD-R284A was purified to apparent homogeneity, and its biochemical properties were compared with wild-type UvrD. UvrD-R284A failed to unwind a 92-base pair duplex region and was severely compromised in unwinding a 20-base pair duplex region. The Km of UvrD-R284A for ATP was significantly greater than 3 mM compared with 80 microM for UvrD. A large decrease in ATP binding was confirmed using a nitrocellulose filter binding assay. These data suggested that the R284A mutation severely reduced the affinity of helicase II for ATP. The reduced unwinding activity and loss of biological function of UvrD-R284A was probably the result of decreased affinity for ATP. These results implicate motif IV of superfamily I helicases in nucleotide binding and represent the first characterization of a helicase mutation outside motifs I and II that severely impacted the Km for ATP

    The Escherichia coli MutL Protein Physically Interacts with MutH and Stimulates the MutH-associated Endonuclease Activity

    Get PDF
    All possible pairwise combinations of UvrD, MutL, MutS, and MutH were tested using the yeast two-hybrid system to identify potential interactions involving mismatch repair proteins. A two-hybrid screen previously identified a physical interaction between MutL and UvrD. Although several other known interactions were not observed, a novel interaction between MutL and MutH was detected. A series of truncations from the NH2 and COOH termini of MutL demonstrated that the COOH-terminal 218 amino acids were sufficient for the two-hybrid interaction with MutH. Removal of a small number of residues from either the NH2 or COOH termini of MutH eliminated the two-hybrid interaction with MutL. Protein affinity chromatography experiments confirmed that MutL, but not MutS, physically associates with MutH. Furthermore, MutL greatly stimulated the d(GATC)-specific endonuclease activity of MutH in the absence of MutS and a mispaired base. Stimulation of the MutH-associated endonuclease activity by MutL was dependent on ATP binding but not ATP hydrolysis. Further stimulation of this reaction by MutS required the presence of a DNA mismatch and a hydrolyzable form of ATP. These results suggest that MutL activates the MutH-associated endonuclease activity through a physical interaction during methyl-directed mismatch repair in Escherichia coli

    Routine Screening of Adolescents for Trichomonas vaginalis in a Juvenile Detention Center

    Get PDF
    Background: Detained and incarcerated adolescents are at increased risk of sexually transmitted infections (STI), but limited information is currently available regarding the prevalence of Trichomonas vaginalis (TV) in detained youth.Methods: A total of 144 detainees (75 males and 69 females) in the Franklin County Juvenile Detention Facility (FCJDF) in Columbus, Ohio, consented to STI screening between May 2016 and June 2017. Participants were screened for TV in addition to Neisseria gonorrhoeae (NG) and Chlamydia trachomatis (CT) using urine nucleic acid amplification tests (NAAT).Results: Among detained youth who consented to testing, TV was identified in 7 of 69 (10.1%) females and 0 of 75 (0%) males (P <0.01). Neisseria gonorrhoeae was identified in 12 of 69 (17.4%) females and 3 of 75 (4.0%) males (P = 0.01), and CT was identified in 16 of 69 (23.2%) female and 7 of 75 (9.3%) male detainees (P = 0.04). Among females, positive TV screen was associated with prior history of STI.Conclusion: Our data support routine screening of female detainees at FCJDF, based on our finding of 10% posi-tivity among females who underwent testing

    Escherichia coli DNA Helicase II Is Active as a Monomer

    Get PDF
    Helicases are thought to function as oligomers (generally dimers or hexamers). Here we demonstrate that although Escherichia coli DNA helicase II (UvrD) is capable of dimerization as evidenced by a positive interaction in the yeast two-hybrid system, gel filtration chromatography, and equilibrium sedimentation ultracentrifugation (Kd = 3.4 microM), the protein is active in vivo and in vitro as a monomer. A mutant lacking the C-terminal 40 amino acids (UvrDDelta40C) failed to dimerize and yet was as active as the wild-type protein in ATP hydrolysis and helicase assays. In addition, the uvrDDelta40C allele fully complemented the loss of helicase II in both methyl-directed mismatch repair and excision repair of pyrimidine dimers. Biochemical inhibition experiments using wild-type UvrD and inactive UvrD point mutants provided further evidence for a functional monomer. This investigation provides the first direct demonstration of an active monomeric helicase, and a model for DNA unwinding by a monomer is presented

    Characterization of the Escherichia coli F factor traY gene product and its binding sites.

    Get PDF
    The traY gene product (TraYp) from the Escherichia coli F factor has previously been purified and shown to bind a DNA fragment containing the F plasmid oriT region (E. E. Lahue and S. W. Matson, J. Bacteriol. 172:1385-1391, 1990). To determine the precise nucleotide sequence bound by TraYp, DNase I footprinting was performed. The TraYp-binding site is near, but not coincident with, the site that is nicked to initiate conjugative DNA transfer. In addition, a second TraYp binding site, which is coincident with the mRNA start site at the traYI promoter, is described. The Kd for each binding site was determined by a gel mobility shift assay. TraYp exhibits a fivefold higher affinity for the oriT binding site compared with the traYI promoter binding site. Hydrodynamic studies were performed to show that TraYp is a monomer in solution under the conditions used in DNA binding assays. Early genetic experiments implicated the traY gene product in the site- and strand-specific endonuclease activity that nicks at oriT (R. Everett and N. Willetts, J. Mol. Biol. 136:129-150, 1980; S. McIntire and N. Willetts, Mol. Gen. Genet. 178:165-172, 1980). As this activity has recently been ascribed to helicase I, it was of interest to see whether TraYp had any effect on this reaction. Addition of TraYp to nicking reactions catalyzed by helicase I showed no effect on the rate or efficiency of oriT nicking. Roles for TraYp in conjugative DNA transfer and a possible mode of binding to DNA are discussed

    Inhibition of Werner Syndrome Helicase Activity by Benzo[ c ]phenanthrene Diol Epoxide dA Adducts in DNA Is Both Strand-and Stereoisomer-dependent

    Get PDF
    Helicases are among the first enzymes to encounter DNA damage during DNA processing within the cell and thus are likely to be targets for the adverse effects of DNA lesions induced by environmental chemicals. Here we examined the effect of cis- and trans-opened 3,4-diol 1,2-epoxide (DE) DNA adducts of benzo[c]phenanthrene (BcPh) at N6 of adenine on helicase activity. These adducts are derived from the highly tumorigenic (-)-(1R,2S,3S,4R)-DE as well as its less carcinogenic (+)-(1S,2R,3R,4S)-DE enantiomer in both of which the benzylic 4-hydroxyl group and epoxide oxygen are trans. The hydrocarbon portions of these adducts intercalate into DNA on the 3' or the 5' side of the adducted deoxyadenosine for the 1S- and 1R-adducts, respectively. These adducts inhibited the human Werner (WRN) syndrome helicase activity in a strand-specific and stereospecific manner. In the strand along which WRN translocates, cis-opened adducts were significantly more effective inhibitors than trans-opened isomers, indicating that WRN unwinding is sensitive to adduct stereochemistry. WRN helicase activity was also inhibited but to a lesser extent by cis-opened BcPh DE adducts in the displaced strand independent of their direction of intercalation, whereas inhibition by the trans-opened stereoisomers in the displaced strand depended on their orientation, such that only adducts oriented toward the advancing helicase inhibited WRN activity. A BcPh DE adduct positioned in the helicase-translocating strand did not sequester WRN, nor affect the rate of ATP hydrolysis relative to an unadducted control. Although the Bloom (BLM) syndrome helicase was also inhibited by a cis-opened adduct in a strand-specific manner, this helicase was not as severely affected as WRN. Because BcPh DEs form substantial amounts of deoxyadenosine adducts at dA, their adverse effects on helicases could contribute to genetic damage and cell transformation induced by these DEs. Thus, the unwinding activity of RecQ helicases is sensitive to the strand, orientation, and stereochemistry of intercalated polycyclic aromatic hydrocarbon adducts

    Modulation of nucleosome dynamics in Huntington's disease

    Get PDF
    Transcriptional dysregulation and aberrant chromatin remodeling are central features in the pathology of Huntington's disease (HD). In order to more fully characterize these pathogenic events, an assessment of histone profiles and associated gene changes were performed in transgenic N171-82Q (82Q) and R6/2 HD mice. Analyses revealed significant chromatin modification, resulting in reduced histone acetylation with concomitant increased histone methylation, consistent with findings observed in HD patients. While there are no known interventions that ameliorate or arrest HD progression, DNA/RNA-binding anthracyclines may provide significant therapeutic potential by correcting pathological nucleosome changes and realigning transcription. Two such anthracyclines, chromomycin and mithramycin, improved altered nucleosome homeostasis in HD mice, normalizing the chromatin pattern. There was a significant shift in the balance between methylation and acetylation in treated HD mice to that found in wild-type mice, resulting in greater acetylation of histone H3 at lysine 9 and promoting gene transcription. Gene expression profiling in anthracycline-treated HD mice showed molecular changes that correlate with disease correction, such that a subset of downregulated genes were upregulated with anthracycline treatment. Improved nucleosomal dynamics were concurrent with a significant improvement in the behavioral and neuropathological phenotype observed in HD mice. These data show the ability of anthracycline compounds to rebalance epigenetic histone modification and, as such, may provide the rationale for the design of human clinical trials in HD patient

    Custom Integrated Circuits

    Get PDF
    Contains reports on seven research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)National Science Foundation (Grant ECS81-18160)Defense Advanced Research Projects Agency (Contract NOO14-80-C-0622)National Science Foundation (Grant ECS83-10941
    • …
    corecore