20 research outputs found

    The development of novel collagen-glycosaminoglycan scaffold for in vitro mesenchymal stem cell chondrogenesis

    Get PDF
    Articular cartilage is an incredibly tough tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. Conversely, its single greatest limitation is the inability to heal even the most minor injuries (Newman, 1998). Due to the absence of a blood supply, articular cartilage responds to damage poorly (Nelson et al., 2010; Bora et al., 1987). Consequently, this predisposes the joint to articular cartilage degeneration. The repair of damaged tissue using conventional therapies and approaches has been elusive thus far. However, the use of tissue engineered biomaterials has shown promise in cartilage defect repair.In this context, the aim of this thesis was to develop a collagen-glycosaminoglycan (CG) scaffold with optimised intrinsic physico-chemical properties that might induce mesenchymal stem cell (MSC) differentiation towards a chondrogenic lineage in vitro. In addition, the effect of environmental factors such as oxygen tension and soluble growth factors in further enhancing chondrogenesis within these highly porous CG scaffolds was investigated. CG scaffolds developed in our laboratory have shown the potential to support MSC chondrogenesis (Farrell et al., 2006). In this thesis it was evident that different GAGs in the scaffolds elicit distinct cellular responses. In particular, hyaluronic acid stimulated enhanced migration, accelerated chondrogenic gene expression and cartilage matrix production in comparison to chondroitin sulphate. This thesis demonstrated that scaffold mean pore size plays a significant role in cellular behaviour. In particular, scaffolds with larger mean pore sizes supported significantly greater chondrogenic gene expression and accumulation of synthesised cartilage matrix in comparison to scaffolds with small mean pore sizes. In addition to the composition and micro-structure, this thesis also demonstrated that scaffold mechanical properties influence the fate of MSCs. Compliant scaffolds stimulated greater MSC chondrogenic differentiation whilst the stiffest scaffolds stimulated MSC osteogenic differentiation in the absence of differentiation factors. This further highlights the importance of scaffold physical characteristics in modulating the behaviour of progenitor cells. This thesis also looked at the effect of environmental factors on MSC chondrogenic differentiation in the optimised porous collagen-hyaluronic acid (CHyA) scaffolds. Low oxygen environments stimulated greater MSC chondrogenic differentiation with short term exposure to hypoxia eliciting additional enhancement chondrogenesis compared to normoxia. In order to further improve the biofunctionality we developed a bioactive CHyA scaffold for the delivery of therapeutic biomolecules such as TGF-P3 in order to enhance the regenerative capacity of the scaffold. It was evident that CHyA scaffolds subsequently permitted controlled release of the growth factors. Furthermore, control over their release rates could be achieved through manipulation of scaffold degradation rates. This demonstrates the potential of using these scaffold-based systems for the delivery of chondro-inductive growth factors with great implications over local control of cellular behaviour. Collectively, this study has led to the development of a type of CG scaffold with optimised composition, micro-architecture and mechanical properties which has significant capacity to promote cartilage regeneration. In addition, this thesis highlights the potential of using these scaffolds as templates for the development of tissue engineered constructs through enhancement of MSC-mediated chondrogenesis with environmental factors

    Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition.

    Get PDF
    Recent investigations into micro-architecture of scaffolds has revealed that mean pore sizes are cell-type specific and influence cellular shape, differentiation, and extracellular matrix secretion. In this context, the overall goal of this study was to investigate whether scaffold mean pore sizes affect mesenchymal stem cell initial attachment, chondrogenic gene expression, and cartilage-like matrix deposition. Collagen-hyaluronic acid (CHyA) scaffolds, recently developed in our laboratory for in vitro chondrogenesis, were fabricated with three distinct mean pore sizes (94, 130, and 300 μm) by altering the freeze-drying technique used. It was evident that scaffolds with the largest mean pore sizes (300 μm) stimulated significantly higher cell proliferation, chondrogenic gene expression, cartilage-like matrix deposition, and resulting bulk compressive modulus after in vitro culture, relative to scaffolds with smaller mean pore sizes (94, 130 μm). Taken together, these findings demonstrate the importance of scaffold micro-architecture in the development of advanced tissue engineering strategies for articular cartilage defect repair

    Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering.

    Get PDF
    The response of mesenchymal stem cells (MSCs) to a matrix largely depends on the composition as well as the extrinsic mechanical and morphological properties of the substrate to which they adhere to. Collagen-glycosaminoglycan (CG) scaffolds have been extensively used in a range of tissue engineering applications with great success. This is due in part to the presence of the glycosaminoglycans (GAGs) in complementing the biofunctionality of collagen. In this context, the overall goal of this study was to investigate the effect of two GAG types: chondroitin sulphate (CS) and hyaluronic acid (HyA) on the mechanical and morphological characteristics of collagen-based scaffolds and subsequently on the differentiation of rat MSCs in vitro. Morphological characterisation revealed that the incorporation of HyA resulted in a significant reduction in scaffold mean pore size (93.9 ÎĽm) relative to collagen-CS (CCS) scaffolds (136.2 ÎĽm). In addition, the collagen-HyA (CHyA) scaffolds exhibited greater levels of MSC infiltration in comparison to the CCS scaffolds. Moreover, these CHyA scaffolds showed significant acceleration of early stage gene expression of SOX-9 (approximately 60-fold higher,

    Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration.

    Get PDF
    The clinical utilization of recombinant human bone morphogenetic protein 2 (rhBMP-2) delivery systems for bone regeneration has been associated with very severe side effects, which are due to the non-controlled and non-targeted delivery of the growth factor from its collagen sponge carrier post-implantation which necessitates supraphysiological doses. However, rhBMP-2 presents outstanding regenerative properties and thus there is an unmet need for a biocompatible, fully resorbable delivery system for the controlled, targeted release of this protein. With this in mind, the purpose of this work was to design and develop a delivery system to release low rhBMP-2 doses from a collagen-hydroxyapatite (CHA) scaffold which had previously been optimized for bone regeneration and recently demonstrated significant healing in vivo. In order to enhance the potential for clinical translation by minimizing the design complexity and thus upscaling and regulatory hurdles of the device, a microparticle and chemical functionalization-free approach was chosen to fulfill this aim. RhBMP-2 was combined with a CHA scaffold using a lyophilization fabrication process to produce a highly porous CHA scaffold supporting the controlled release of the protein over the course of 21days while maintaining in vitro bioactivity as demonstrated by enhanced alkaline phosphatase activity and calcium production by preosteoblasts cultured on the scaffold. When implanted in vivo, these materials demonstrated increased levels of healing of critical-sized rat calvarial defects 8weeks post-implantation compared to an empty defect and unloaded CHA scaffold, without eliciting bone anomalies or adjacent bone resorption. These results demonstrate that it is possible to achieve bone regeneration using 30 times less rhBMP-2 than INFUSE®, the current clinical gold standard; thus, this work represents the first step of the development of a rhBMP-2 eluting material with immense clinical potential

    Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits.

    Get PDF
    INTRODUCTION: Identification of a suitable treatment for osteochondral repair presents a major challenge due to existing limitations and an urgent clinical need remains for an off-the-shelf, low cost, one-step approach. A biomimetic approach, where the biomaterial itself encourages cellular infiltration from the underlying bone marrow and provides physical and chemical cues to direct these cells to regenerate the damaged tissue, provides a potential solution. To meet this need, a multi-layer collagen-based osteochondral defect repair scaffold has been developed in our group. AIM: The objective of this study was to assess the in vivo response to this scaffold and determine its ability to direct regenerative responses in each layer in order to repair osteochondral tissue in a critical-sized defect in a rabbit knee. METHODS: Multi-layer scaffolds, consisting of a bone layer composed of type I collagen (bovine source) and hydroxyapatite (HA), an intermediate layer composed of type I and type II collagen and HA; and a superficial layer composed of type I and type II collagen (porcine source) and hyaluronic acid (HyA), were implanted into critical size (3 Ă— 5 mm) osteochondral defects created in the medial femoral condyle of the knee joint of New Zealand white rabbits and compared to an empty control group. Repair was assessed macroscopically, histologically and using micro-CT analysis at 12 weeks post implantation. RESULTS: Analysis of repair tissue demonstrated an enhanced macroscopic appearance in the multi-layer scaffold group compared to the empty group. In addition, diffuse host cellular infiltration in the scaffold group resulted in tissue regeneration with a zonal organisation, with repair of the subchondral bone, formation of an overlying cartilaginous layer and evidence of an intermediate tidemark. CONCLUSION: These results demonstrate the potential of this biomimetic multi-layered scaffold to support and guide the host reparative response in the treatment of osteochondral defects. STATEMENT OF SIGNIFICANCE: Osteochondral defects, involving cartilage and the underlying subchondral bone, frequently occur in young active patients due to disease or injury. While some treatment options are available, success is limited and patients often eventually require joint replacement. To address this clinical need, a multi-layer collagen-based osteochondral defect repair scaffold designed to direct host-stem cell mediated tissue formation within each region, has been developed in our group. The present study investigates the in vivo response to this scaffold in a critical-sized defect in a rabbit knee. Results shows the scaffolds ability to guide the host reparative response leading to tissue regeneration with a zonal organisation, repair of the subchondral bone, formation of an overlying cartilaginous layer and evidence of an intermediate tidemark

    A biomimetic multi-layered collagen-based scaffold for osteochondral repair.

    Get PDF
    Cartilage and osteochondral defects pose a significant challenge in orthopedics. Tissue engineering has shown promise as a potential method for the treatment of such defects; however, a long-lasting repair strategy has yet to be realized. This study focuses on the development of a layered construct for osteochondral repair, fabricated through a novel \u22iterative layering\u22 freeze-drying technique. The process involved repeated steps of layer addition followed by freeze-drying, enabling control over material composition, pore size and substrate stiffness in each region of the construct, while also achieving a seamlessly integrated layer structure. The novel construct developed mimics the inherent gradient structure of healthy osteochondral tissue: a bone layer composed of type I collagen and hydroxyapatite (HA), an intermediate layer composed of type I collagen, type II collagen and HA and a cartilaginous region composed of type I collagen, type II collagen and hyaluronic acid. The material properties were designed to provide the biological cues required to encourage infiltration of host cells from the bone marrow while the biomechanical properties were designed to provide an environment optimized to promote differentiation of these cells towards the required lineage in each region. This novel osteochondral graft was shown to have a seamlessly integrated layer structure, high levels of porosity (\u3e97%), a homogeneous pore structure and a high degree of pore interconnectivity. Moreover, homogeneous cellular distribution throughout the entire construct was evident following in vitro culture, demonstrating the potential of this multi-layered scaffold as an advanced strategy for osteochondral defect repair

    Prosthetics in war and peace

    No full text

    Engineering smart antibodies

    No full text
    corecore