7 research outputs found

    The extent and impact of variation in ADME genes in sub-Saharan African populations

    Get PDF
    Investigating variation in genes involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs are key to characterizing pharmacogenomic (PGx) relationships. ADME gene variation is relatively well characterized in European and Asian populations, but data from African populations are under-studied—which has implications for drug safety and effective use in Africa

    Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Engaged genomic science produces better and fairer outcomes: an engagement framework for engaging and involving participants, patients and publics in genomics research and healthcare implementation

    Get PDF
    Genomic science is increasingly central to the provision of health care. Producing and applying robust genomics knowledge is a complex endeavour in which no single individual, profession, discipline or community holds all the answers. Engagement and involvement of diverse stakeholders can support alignment of societal and scientific interests, understandings and perspectives and promises better science and fairer outcomes. In this context we argue for F.A.I.R.E.R. data and data use that is Findable, Accessible, Interoperable, Reproducible, Equitable and Responsible. Yet there is a paucity of international guidance on how to engage publics, patients and participants in genomics. To support meaningful and effective engagement and involvement we developed an Engagement Framework for involving and engaging participants, patients and publics in genomics research and health implementation. The Engagement Framework is intended to support all those working in genomics research, medicine, and healthcare to deliberatively consider approaches to participant, patient and public engagement and involvement in their work. Through a series of questions, the Engagement Framework prompts new ways of thinking about the aims and purposes of engagement, and support reflection on the strengths, limitations, likely outcomes and impacts of choosing different approaches to engagement. To guide genomics activities, we describe four themes and associated questions for deliberative reflection: (i) fairness; (ii) context; (iii) heterogeneity, and (iv) recognising tensions and conflict. The four key components in the Engagement provide a framework to assist those involved in genomics to reflect on decisions they make for their initiatives, including the strategies selected, the participant, patient and public stakeholders engaged, and the anticipated goals. The Engagement Framework is one step in an actively evolving process of building genomics research and implementation cultures which foster responsible leadership and are attentive to objectives which increase equality, diversity and inclusion in participation and outcomes

    Incidence of switching to second-line antiretroviral therapy and associated factors in children with HIV: an international cohort collaboration

    Get PDF
    Background: Estimates of incidence of switching to second-line antiretroviral therapy (ART) among children with HIV are necessary to inform the need for paediatric second-line formulations. We aimed to quantify the cumulative incidence of switching to second-line ART among children in an international cohort collaboration. Methods: In this international cohort collaboration study, we pooled individual patient-level data for children younger than 18 years who initiated ART (two or more nucleoside reverse-transcriptase inhibitors [NRTI] plus a non-NRTI [NNRTI] or boosted protease inhibitor) between 1993 and 2015 from 12 observational cohort networks in the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Global Cohort Collaboration. Patients who were reported to be horizontally infected with HIV and those who were enrolled in trials of treatment monitoring, switching, or interruption strategies were excluded. Switch to second-line ART was defined as change of one or more NRTI plus either change in drug class (NNRTI to protease inhibitor or vice versa) or protease inhibitor change, change from single to dual protease inhibitor, or addition of a new drug class. We used cumulative incidence curves to assess time to switching, and multivariable proportional hazards models to explore patient-level and cohort-level factors associated with switching, with death and loss to follow-up as competing risks. Findings: At the data cutoff of Sept 16, 2015, 182 747 children with HIV were included in the CIPHER dataset, of whom 93 351 were eligible, with 83 984 (90·0%) from sub-Saharan Africa. At ART initiation, the median patient age was 3·9 years (IQR 1·6-6·9) and 82 885 (88·8%) patients initiated NNRTI-based and 10 466 (11·2%) initiated protease inhibitor-based regimens. Median duration of follow-up after ART initiation was 26 months (IQR 9-52). 3883 (4·2%) patients switched to second-line ART after a median of 35 months (IQR 20-57) of ART. The cumulative incidence of switching at 3 years was 3·1% (95% CI 3·0-3·2), but this estimate varied widely depending on the cohort monitoring strategy, from 6·8% (6·5-7·2) in settings with routine monitoring of CD4 (CD4% or CD4 count) and viral load to 0·8% (0·6-1·0) in settings with clinical only monitoring. In multivariable analyses, patient-level factors associated with an increased likelihood of switching were male sex, older age at ART initiation, and initial NNRTI-based regimen (p<0·0001). Cohort-level factors that increased the likelihood of switching were higher-income country (p=0·0017) and routine or targeted monitoring of CD4 and viral load (p<0·0001), which was associated with a 166% increase in likelihood of switching compared with CD4 only monitoring (subdistributional hazard ratio 2·66, 95% CI 2·22-3·19). Interpretation: Our global paediatric analysis found wide variations in the incidence of switching to second-line ART across monitoring strategies. These findings suggest the scale-up of viral load monitoring would probably increase demand for paediatric second-line ART formulations

    Outcomes of second-line antiretroviral therapy among children living with HIV: a global cohort analysis

    No full text
    Limited data describe outcomes on second-line antiretroviral therapy (ART) among children globally. Our objective was to contribute data on outcomes among children living with HIV after initiation of second-line ART in the context of routine care within a large global cohort collaboration
    corecore