357 research outputs found
The Longest Queue Drop Policy for Shared-Memory Switches is 1.5-competitive
We consider the Longest Queue Drop memory management policy in shared-memory
switches consisting of output ports. The shared memory of size
may have an arbitrary number of input ports. Each packet may be admitted by any
incoming port, but must be destined to a specific output port and each output
port may be used by only one queue. The Longest Queue Drop policy is a natural
online strategy used in directing the packet flow in buffering problems.
According to this policy and assuming unit packet values and cost of
transmission, every incoming packet is accepted, whereas if the shared memory
becomes full, one or more packets belonging to the longest queue are preempted,
in order to make space for the newly arrived packets. It was proved in 2001
[Hahne et al., SPAA '01] that the Longest Queue Drop policy is 2-competitive
and at least -competitive. It remained an open question whether a
(2-\epsilon) upper bound for the competitive ratio of this policy could be
shown, for any positive constant \epsilon. We show that the Longest Queue Drop
online policy is 1.5-competitive
Antibiotics in the Saw Kill and Rhinebeck Kill Creeks: Tracking Anthropogenic pollution with Bacteria and Integrons
Antibiotic resistance is an increasingly researched topic along with concerns regarding emerging organic contaminants. Antibiotic resistance is a risk to public health and therefore a better method for tracking antibiotics and antibiotic resistance is needed to develop regulations and protect the public. Several studies have shown that the use of class 1 Integrons and fecal indicator bacteria (FIB) prove effective for conducting these tests. This study aimed to assess the extent to which FIB and Integrons were present in the Saw Kill and Rhinebeck Kill creeks and serve as effective indicators of antibiotic resistance. The results show that there were no statistical differences in environmental variables and FIB concentrations between sites. Because this study was cut short, the presence of Integrons and antibiotic resistance were not measured; however, samples were stored for DNA extraction at a later date
Colloquium: Comparison of Astrophysical and Terrestrial Frequency Standards
We have re-analyzed the stability of pulse arrival times from pulsars and
white dwarfs using several analysis tools for measuring the noise
characteristics of sampled time and frequency data. We show that the best
terrestrial artificial clocks substantially exceed the performance of
astronomical sources as time-keepers in terms of accuracy (as defined by cesium
primary frequency standards) and stability. This superiority in stability can
be directly demonstrated over time periods up to two years, where there is high
quality data for both. Beyond 2 years there is a deficiency of data for
clock/clock comparisons and both terrestrial and astronomical clocks show equal
performance being equally limited by the quality of the reference timescales
used to make the comparisons. Nonetheless, we show that detailed accuracy
evaluations of modern terrestrial clocks imply that these new clocks are likely
to have a stability better than any astronomical source up to comparison times
of at least hundreds of years. This article is intended to provide a correct
appreciation of the relative merits of natural and artificial clocks. The use
of natural clocks as tests of physics under the most extreme conditions is
entirely appropriate; however, the contention that these natural clocks,
particularly white dwarfs, can compete as timekeepers against devices
constructed by mankind is shown to be doubtful.Comment: 9 pages, 2 figures; presented at the International Frequency Control
Symposium, Newport Beach, Calif., June, 2010; presented at Pulsar Conference
2010, October 12th, Sardinia; accepted 13th September 2010 for publication in
Reviews of Modern Physic
- …