3 research outputs found

    Efficacy of Spectral Signatures for the Automatic Classification of Abnormal Ventricular Potentials in Substrate-Guided Mapping Procedures

    Get PDF
    Several peculiar spectral signatures of post-ischaemic ventricular tachycardia (VT) electrograms (EGMs) have been recently published in the scientific literature. However, despite they were claimed as potentially useful for the automatic identification of arrhythmogenic targets for the VT treatment by trans-catheter ablation, their exploitation in machine learning (ML) applications has been not assessed yet. The aim of this work is to investigate the impact of the information retrieved from these frequency-domain signatures in modelling supervised ML tools for the identification of physiological and abnormal ventricular potentials (AVPs). As such, 1504 bipolar intracardiac EGMs from nine electroanatomic mapping procedures of post-ischaemic VT patients were retrospectively labelled as AVPs or physiological by an expert electrophysiologist. In order to assess the efficacy of the proposed spectral features for AVPs recognition, two different classifiers were adopted in a 10-time 10-fold cross-validation scheme. In both classifiers, the adoption of spectral signatures led to recognition accuracy values above 81%, suggesting that the use of the frequency-domain characteristics of these signals can be successfully considered for the computer-aided recognition of AVPs in substrate-guided mapping procedures

    Spectral characterisation of ventricular intracardiac potentials in human post-ischaemic bipolar electrograms

    Get PDF
    Abnormal ventricular potentials (AVPs) are frequently referred to as high-frequency defections in intracardiac electrograms (EGMs). However, no scientifc study performed a deep spectral characterisation of AVPs and physiological potentials in real bipolar intracardiac recordings across the entire frequency range imposed by their sampling frequency. In this work, the power contributions of post-ischaemic physiological potentials and AVPs, along with some spectral features, were evaluated in the frequency domain and then statistically compared to highlight specific spectral signatures for these signals. To this end, 450 bipolar EGMs from seven patients affected by post-ischaemic ventricular tachycardia were retrospectively annotated by an experienced cardiologist. Given the high variability of the morphologies observed, three different sub-classes of AVPs and two subcategories of post-ischaemic physiological potentials were considered. All signals were acquired by the CARTO\uae 3 system during substrate-guided catheter ablation procedures. Our findings indicated that the main frequency contributions of physiological and pathological post-ischaemic EGMs are found below 320 Hz. Statistical analyses showed that, when biases due to the signal amplitude influence are eliminated, not only physiological potentials show greater contributions below 20 Hz whereas AVPs demonstrate higher spectral contributions above~ 40 Hz, but several finer differences may be observed between the different AVP types

    Custom FPGA Processing for Real-Time Fetal ECG Extraction and Identification

    No full text
    Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, to the best of our knowledge
    corecore