1,086 research outputs found
Effect of particle properties of powders on the generation and transmission of raman scattering
Transmission Raman measurements of a 1 mm thick sulfur-containing disk were made at different positions as it was moved through 4 mm of aspirin (150-212 mu m) or microcrystalline cellulose (Avicel) of different size ranges (<38, 53-106, and 150-212 mu m). The transmission Raman intensity of the sulfur interlayer at 218 cm(-1) was lower when the disk was placed at the top or bottom of the powder bed, compared to positions within the bed and the difference between the sulfur intensity at the outer and inner positions increased with Avicel particle size. Also, the positional intensity difference was smaller for needle-shaped aspirin than for granular Avicel of the same size. The attenuation coefficients for the propagation of the exciting laser and transmitted Raman photons through the individual powders were the same but decreased as the particle size of Avicel increased; also, the attenuation coefficients for propagation through 150-212 mu m aspirin were almost half of those through similar sized Avicel particles. The study has demonstrated that particulate size and type affect transmitted Raman intensities and, consequently, such factors need to be considered in the analysis of powders, especially if particle properties vary between the samples
Algorithms for Colourful Simplicial Depth and Medians in the Plane
The colourful simplicial depth of a point x in the plane relative to a
configuration of n points in k colour classes is exactly the number of closed
simplices (triangles) with vertices from 3 different colour classes that
contain x in their convex hull. We consider the problems of efficiently
computing the colourful simplicial depth of a point x, and of finding a point,
called a median, that maximizes colourful simplicial depth.
For computing the colourful simplicial depth of x, our algorithm runs in time
O(n log(n) + k n) in general, and O(kn) if the points are sorted around x. For
finding the colourful median, we get a time of O(n^4). For comparison, the
running times of the best known algorithm for the monochrome version of these
problems are O(n log(n)) in general, improving to O(n) if the points are sorted
around x for monochrome depth, and O(n^4) for finding a monochrome median.Comment: 17 pages, 8 figure
Surface enhanced deep Raman detection of cancer tumour through 71 mm of heterogeneous tissue
Detection of solid tumours through tissue− from depths relevant to humans− has been a significant challenge for biomedical Raman spectroscopy. The combined use of surface enhanced Raman scattering (SERS) imaging agents with deep Raman spectroscopy (DRS), i.e., surface enhanced deep Raman spectroscopy (SEDRS), offer prospects for overcoming such obstacles. In this study, we investigated the maximum detection depth through which the retrieval of SERS signal of a passively targeted biphenyl-4-thiol tagged gold nanoparticle (NP) imaging agent, injected subcutaneously into a mouse bearing breast cancer tumour, was possible. A compact 830 nm set-up with a hand-held probe and the flexibility of switching between offset, transmission and conventional Raman modalities was developed for this study. In vivo injection of the above SERS NP primary dose allowed surface tumour detection, whereas additional post mortem NP booster dose was required for detection of deeply seated tumours through heterogeneous animal tissue (comprising of proteins, fat, bone, organs, blood, and skin). The highest detection depth of 71 mm was probed using transmission, translating into a ∼40% increase in detection depth compared to earlier reports. Such improvements in detection depth along with the inherent Raman chemical sensitivity brings SEDRS one step closer to future clinical cancer imaging technology
Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy
This proof of concept study demonstrates the application of transmission Raman spectroscopy (TRS) to the non-invasive and non-destructive quantification of low levels (0.62-1.32% w/w) of an active pharmaceutical ingredient's polymorphic forms in a pharmaceutical formulation. Partial least squares calibration models were validated with independent validation samples resulting in prediction RMSEP values of 0.03-0.05% w/w and a limit of detection of 0.1-0.2% w/w. The study further demonstrates the ability of TRS to quantify all tablet constituents in one single measurement. By analysis of degraded stability samples, sole transformation between polymorphic forms was observed while excipient levels remained constant. Additionally, a beam enhancer device was used to enhance laser coupling to the sample, which allowed comparable prediction performance at 60 times faster rates (0.2 s) than in standard mode
Why is it so hard to enact responsible change?: Scientists need to work more closely with other social groups to implement sustainable innovation
This is the final version. Available on open access from EMBO Press via the DOI in this record. Biotechnology and Biological Sciences Research Council (BBSRC)UK Research and Innovation | Engineering and Physical Sciences Research Council (EPSRC)Wellcome Trus
Bregman Voronoi Diagrams: Properties, Algorithms and Applications
The Voronoi diagram of a finite set of objects is a fundamental geometric
structure that subdivides the embedding space into regions, each region
consisting of the points that are closer to a given object than to the others.
We may define many variants of Voronoi diagrams depending on the class of
objects, the distance functions and the embedding space. In this paper, we
investigate a framework for defining and building Voronoi diagrams for a broad
class of distance functions called Bregman divergences. Bregman divergences
include not only the traditional (squared) Euclidean distance but also various
divergence measures based on entropic functions. Accordingly, Bregman Voronoi
diagrams allow to define information-theoretic Voronoi diagrams in statistical
parametric spaces based on the relative entropy of distributions. We define
several types of Bregman diagrams, establish correspondences between those
diagrams (using the Legendre transformation), and show how to compute them
efficiently. We also introduce extensions of these diagrams, e.g. k-order and
k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set
of points and their connexion with Bregman Voronoi diagrams. We show that these
triangulations capture many of the properties of the celebrated Delaunay
triangulation. Finally, we give some applications of Bregman Voronoi diagrams
which are of interest in the context of computational geometry and machine
learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures
Repurposing rapid diagnostic tests to detect falsified vaccines in supply chains
Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global ‘Prevent, Detect and Respond’ strategy
Optimal Consensus set for nD Fixed Width Annulus Fitting
International audienceThis paper presents a method for fitting a nD fixed width spherical shell to a given set of nD points in an image in the presence of noise by maximizing the number of inliers, namely the consensus set. We present an algorithm, that provides the optimal solution(s) within a time complexity O(N n+1 log N) for dimension n, N being the number of points. Our algorithm guarantees optimal solution(s) and has lower complexity than previous known methods
- …