55 research outputs found

    Hubbard Hamiltonian in the dimer representation. Large U limit

    Full text link
    We formulate the Hubbard model for the simple cubic lattice in the representation of interacting dimers applying the exact solution of the dimer problem. By eliminating from the considerations unoccupied dimer energy levels in the large U limit (it is the only assumption) we analytically derive the Hubbard Hamiltonian for the dimer (analogous to the well-known t-J model), as well as, the Hubbard Hamiltonian for the crystal as a whole by means of the projection technique. Using this approach we can better visualize the complexity of the model, so deeply hidden in its original form. The resulting Hamiltonian is a mixture of many multiple ferromagnetic, antiferromagnetic and more exotic interactions competing one with another. The interplay between different competitive interactions has a decisive influence on the resulting thermodynamic properties of the model, depending on temperature, model parameters and assumed average number of electrons per lattice site. A simplified form of the derived Hamiltonian can be obtained using additionally Taylor expansion with respect to x=tUx=\frac{t}{U} (t-hopping integral between nearest neighbours, U-Coulomb repulsion). As an example, we present the expansion including all terms proportional to t and to t2U\frac{t^2}U and we reproduce the exact form of the Hubbard Hamiltonian in the limit UU\to \infty . The nonperturbative approach, presented in this paper, can, in principle, be applied to clusters of any size, as well as, to another types of model Hamiltonians.Comment: 26 pages, 1 figure, LaTeX; added reference

    The dynamics of the non-heme iron in bacterial reaction centers from Rhodobacter sphaeroides

    Get PDF
    AbstractWe investigate the dynamical properties of the non-heme iron (NHFe) in His-tagged photosynthetic bacterial reaction centers (RCs) isolated from Rhodobacter (Rb.) sphaeroides. Mössbauer spectroscopy and nuclear inelastic scattering of synchrotron radiation (NIS) were applied to monitor the arrangement and flexibility of the NHFe binding site. In His-tagged RCs, NHFe was stabilized only in a high spin ferrous state. Its hyperfine parameters (IS=1.06±0.01mm/s and QS=2.12±0.01mm/s), and Debye temperature (θD0~167K) are comparable to those detected for the high spin state of NHFe in non-His-tagged RCs. For the first time, pure vibrational modes characteristic of NHFe in a high spin ferrous state are revealed. The vibrational density of states (DOS) shows some maxima between 22 and 33meV, 33 and 42meV, and 53 and 60meV and a very sharp one at 44.5meV. In addition, we observe a large contribution of vibrational modes at low energies. This iron atom is directly connected to the protein matrix via all its ligands, and it is therefore extremely sensitive to the collective motions of the RC protein core. A comparison of the DOS spectra of His-tagged and non-His-tagged RCs from Rb. sphaeroides shows that in the latter case the spectrum was overlapped by the vibrations of the heme iron of residual cytochrome c2, and a low spin state of NHFe in addition to its high spin one. This enabled us to pin-point vibrations characteristic for the low spin state of NHFe

    Cathodoluminescence characterization of Ge-doped CdTe crystals

    Get PDF
    Cathodoluminescence (CL) microscopic techniques have been used to study the spatial distribution of structural defects and the deep levels in CdTe:Ge bulk crystals. The effect of Ge doping with concentrations of 10(17) and 10(19) cm(-3) on the compensation of V-Cd in CdTe has been investigated. Dependence of the intensity distribution of CL emission bands on the dopant concentration has been studied. Ge doping causes a substantial reduction of the generally referred to 1.40 eV luminescence, which is often present in undoped CdTe crystals, and enhances the 0.91 and 0.81 eV emissions

    Differentiation and integration by using matrix inversion

    No full text
    In the paper certain examples of applications of the matrix inverses for generating and calculating the integrals are presented
    corecore