7 research outputs found

    Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variable structure parallel mechanisms, actuated with low-cost motors with serially added elasticity (series elastic actuator - SEA), has considerable potential in rehabilitation robotics. However, reflected masses of a SEA and variable structure parallel mechanism linked with a compliant actuator result in a potentially unstable coupled mechanical oscillator, which has not been addressed in previous studies.</p> <p>Methods</p> <p>The aim of this paper was to investigate through simulation, experimentation and theoretical analysis the necessary conditions that guarantee stability and passivity of a haptic device (based on a variable structure parallel mechanism driven by SEA actuators) when in contact with a human. We have analyzed an equivalent mechanical system where a dissipative element, a mechanical damper was placed in parallel to a spring in SEA.</p> <p>Results</p> <p>The theoretical analysis yielded necessary conditions relating the damping coefficient, spring stiffness, both reflected masses, controller's gain and desired virtual impedance that needs to be fulfilled in order to obtain stable and passive behavior of the device when in contact with a human. The validity of the derived passivity conditions were confirmed in simulations and experimentally.</p> <p>Conclusions</p> <p>These results show that by properly designing variable structure parallel mechanisms actuated with SEA, versatile and affordable rehabilitation robotic devices can be conceived, which may facilitate their wide spread use in clinical and home environments.</p

    Evaluation of elemental composition of sediments from the Adriatic Sea by using EDXRF technique.

    No full text
    723 sediment samples collected along the eastern Adriatic coast have been analyzed using Energy Dispersive X-Ray Fluorescence. Factor Analysis and GIS have been used for the evaluation of the resulting data base containing information on K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Br, Rb, Sr, Y, and Pb concentration levels in order to find spatial relationships in distribution of measured elements. This study can be used to identify background values and to evaluate sediment quality standards

    Evaluation of elemental composition of sediments from the Adriatic Sea by using EDXRF technique.

    No full text
    723 sediment samples collected along the eastern Adriatic coast have been analyzed using Energy Dispersive X-Ray Fluorescence. Factor Analysis and GIS have been used for the evaluation of the resulting data base containing information on K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Br, Rb, Sr, Y, and Pb concentration levels in order to find spatial relationships in distribution of measured elements. This study can be used to identify background values and to evaluate sediment quality standards

    Simultaneous molecular and elemental mapping under ambient conditions by coupling AP MeV SIMS and HIPIXE

    No full text
    Ion Beam Analysis (IBA) consists of a set of analytical techniques addressing elemental composition of inorganic material normally conducted using ion beams in the MeV kinetic energy range. Secondary Ion Mass Spectrometry using MeV ions (MeV SIMS) is the only IBA technique which can provide extensive molecular information about organic materials. MeV ions can be extracted into air hence offering the potential to apply MeV SIMS under atmospheric pressure. At the University of Surrey Ion Beam Centre, a fully ambient MeV SIMS setup has been developed and termed “Ambient Pressure MeV SIMS”. This AP MeV SIMS can be optimized for analysis and imaging of organic molecules. MeV SIMS relies upon electronic sputtering of the target material and this is much more efficient in insulating or organic targets, and less efficient in conducting metallic materials. PIXE, on the other hand, is efficient at providing good signals from elemental metallic systems, but does not readily provide molecular information from organics. The combination of the two techniques – preferably simultaneously with the same beam – provides useful complementary information which can readily be combined. Here we present pioneering preliminary work in simultaneous molecular and elemental imaging of a complex sample comprising of two organic species and two metallic species by combining AP MeV SIMS with Heavy Ion Particle Induced X-ray emission (HIPIXE)

    Ultra‐low dark current organic–inorganic hybrid X‐ray detectors

    No full text
    Organic‐inorganic hybrid semiconductors are an emerging class of materials for direct conversion X‐ray detection due to attractive characteristics such as high sensitivity and the potential to form conformal detectors. However, existing hybrid semiconductor X‐ray detectors display dark currents that are 1000–10 000× higher than industrially relevant values of 1–10 pA mm−2. Herein, ultra‐low dark currents of <10 pA mm−2, under electric fields as high as ≈4 V µm−1, for hybrid X‐ray detectors consisting of bismuth oxide nanoparticles (for enhanced X‐ray attenuation) incorporated into an organic bulk heterojunction consisting of p‐type Poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) and n‐type [6,6]‐Phenyl C71 butyric acid methyl ester (PC70BM) are reported. Such ultra‐low dark currents are realized through the enrichment of the hole selective p‐type organic semiconductor near the anode contact. The resulting detectors demonstrate broadband X‐ray response including an exceptionally high sensitivity of ≈1.5 mC Gy−1 cm−2 and <6% variation in angular dependence response under 6 MV hard X‐rays. The above characteristics in combination with excellent dose linearity, dose rate linearity, and reproducibility over a broad energy range enable these detectors to be developed for medical and industrial applications
    corecore