4 research outputs found

    Outbreak of <i>Pseudomonas aeruginosa</i> High-Risk Clone ST309 Serotype O11 Featuring <i>bla</i><sub>PER-1</sub> and <i>qnrVC6</i>

    No full text
    Pseudomonas aeruginosa is a leading cause of hospital-acquired infections worldwide. Biofilm production, antibiotic resistance, and a wide range of virulence factors contribute to their persistence in nosocomial environments. We describe an outbreak caused by a multidrug-resistant P. aeruginosa strain in an ICU. Antibiotic susceptibility was determined and blaPER-1 and qnrVC were amplified via PCR. Clonality was determined using PFGE and biofilm formation was studied with a static model. A combination of antibiotics was assessed on both planktonic cells and biofilms. WGS was performed on five isolates. All isolates were clonally related, resistant to ceftazidime, cefepime, amikacin, and ceftolozane-tazobactam, and harbored blaPER-1; 11/19 possessed qnrVC. Meropenem and ciprofloxacin reduced the biofilm biomass; however, the response to antibiotic combinations with rifampicin was different between planktonic cells and biofilms. WGS revealed that the isolates belonged to ST309 and serotype O11. blaPER-1 and qnrVC6 were associated with a tandem of ISCR1 as part of a complex class one integron, with aac(6′)-Il and ltrA as gene cassettes. The structure was associated upstream and downstream with Tn4662 and flanked by direct repeats, suggesting its horizontal mobilization capability as a composite transposon. ST309 is considered an emerging high-risk clone that should be monitored in the Americas

    Novel Resistance Regions Carrying TnaphA6, blaVIM-2, and blaPER-1, Embedded in an ISPa40-Derived Transposon from Two Multi-Resistant Pseudomonas aeruginosa Clinical Isolates

    No full text
    Antibiotic resistance is an alarming problem throughout the world and carbapenem-resistant Pseudomonas aeruginosa has been cataloged as critical in the World Health Organization list of microorganisms in urgent need for the development of new antimicrobials. In this work, we describe two novel resistance regions responsible for conferring a multidrug resistance phenotype to two clinical isolates of P. aeruginosa (Pa873 and Pa6415) obtained from patients hospitalized in the ICU of University Hospital of Uruguay. Bacterial identification and antibiotic susceptibility tests were performed using MALDI-TOF and the Vitek 2 system, respectively. WGS was performed for both isolates using Oxford Nanopore Technologies and Illumina and processed by means of hybrid assembly. Both isolates were resistant to ceftazidime, cefepime, piperacillin–tazobactam, aztreonam, and imipenem. Strain Pa6415 also showed resistance to ciprofloxacin. Both strains displayed MICs below the susceptibility breakpoint for CAZ-AVI plus 4 mg/L of aztreonam as well as cefiderocol. Both resistance regions are flanked by the left and right inverted repeats of ISPa40 in two small regions spanning 39.3 and 35.6 kb, for Pa6415 and Pa873, respectively. The resistance region of Pa6415 includes TnaphA6, and the new Tn7516 consists of IRi, In899, qacEΔ1-sul1-ISCR1, qnrVC6-ISCR1-bla-qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR. On the other hand, the resistance region of Pa873 includes Tnaph6 and the new Tn7517 (IRi, In899, qacEΔ1-sul1, ISCR1–bla–qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR). It is necessary to monitor the emergence of genetic structures that threaten to invalidate the available therapeutic resources.This research received no external fundin

    Novel Resistance Regions Carrying TnaphA6, blaVIM-2, and blaPER-1, Embedded in an ISPa40-Derived Transposon from Two Multi-Resistant Pseudomonas aeruginosa Clinical Isolates

    No full text
    Antibiotic resistance is an alarming problem throughout the world and carbapenem-resistant Pseudomonas aeruginosa has been cataloged as critical in the World Health Organization list of microorganisms in urgent need for the development of new antimicrobials. In this work, we describe two novel resistance regions responsible for conferring a multidrug resistance phenotype to two clinical isolates of P. aeruginosa (Pa873 and Pa6415) obtained from patients hospitalized in the ICU of University Hospital of Uruguay. Bacterial identification and antibiotic susceptibility tests were performed using MALDI-TOF and the Vitek 2 system, respectively. WGS was performed for both isolates using Oxford Nanopore Technologies and Illumina and processed by means of hybrid assembly. Both isolates were resistant to ceftazidime, cefepime, piperacillin&ndash;tazobactam, aztreonam, and imipenem. Strain Pa6415 also showed resistance to ciprofloxacin. Both strains displayed MICs below the susceptibility breakpoint for CAZ-AVI plus 4 mg/L of aztreonam as well as cefiderocol. Both resistance regions are flanked by the left and right inverted repeats of ISPa40 in two small regions spanning 39.3 and 35.6 kb, for Pa6415 and Pa873, respectively. The resistance region of Pa6415 includes TnaphA6, and the new Tn7516 consists of IRi, In899, qacE&Delta;1-sul1-ISCR1, qnrVC6-ISCR1-blaPER-1-qacE&Delta;1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR. On the other hand, the resistance region of Pa873 includes Tnaph6 and the new Tn7517 (IRi, In899, qacE&Delta;1-sul1, ISCR1&ndash;blaPER-1&ndash;qacE&Delta;1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR). It is necessary to monitor the emergence of genetic structures that threaten to invalidate the available therapeutic resources

    Novel Resistance Regions Carrying Tn<i>aphA6</i>, <i>bla</i><sub>VIM-2</sub>, and <i>bla</i><sub>PER-1</sub>, Embedded in an IS<i>Pa40</i>-Derived Transposon from Two Multi-Resistant <i>Pseudomonas aeruginosa</i> Clinical Isolates

    No full text
    Antibiotic resistance is an alarming problem throughout the world and carbapenem-resistant Pseudomonas aeruginosa has been cataloged as critical in the World Health Organization list of microorganisms in urgent need for the development of new antimicrobials. In this work, we describe two novel resistance regions responsible for conferring a multidrug resistance phenotype to two clinical isolates of P. aeruginosa (Pa873 and Pa6415) obtained from patients hospitalized in the ICU of University Hospital of Uruguay. Bacterial identification and antibiotic susceptibility tests were performed using MALDI-TOF and the Vitek 2 system, respectively. WGS was performed for both isolates using Oxford Nanopore Technologies and Illumina and processed by means of hybrid assembly. Both isolates were resistant to ceftazidime, cefepime, piperacillin–tazobactam, aztreonam, and imipenem. Strain Pa6415 also showed resistance to ciprofloxacin. Both strains displayed MICs below the susceptibility breakpoint for CAZ-AVI plus 4 mg/L of aztreonam as well as cefiderocol. Both resistance regions are flanked by the left and right inverted repeats of ISPa40 in two small regions spanning 39.3 and 35.6 kb, for Pa6415 and Pa873, respectively. The resistance region of Pa6415 includes TnaphA6, and the new Tn7516 consists of IRi, In899, qacEΔ1-sul1-ISCR1, qnrVC6-ISCR1-blaPER-1-qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR. On the other hand, the resistance region of Pa873 includes Tnaph6 and the new Tn7517 (IRi, In899, qacEΔ1-sul1, ISCR1–blaPER-1–qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR). It is necessary to monitor the emergence of genetic structures that threaten to invalidate the available therapeutic resources
    corecore