9 research outputs found

    Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing

    Get PDF
    Nordic Laser Materials Processing Conference Volume: 78 Host publication title: 15th Nordic Laser Materials Processing Conference, Nolamp 15Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.Peer reviewe

    Simple 3D printed stainless steel microreactors for online mass spectrometric analysis

    Get PDF
    A simple flow chemistry microreactor with an electrospray ionization tip for real time mass spectrometric reaction monitoring is introduced. The microreactor was fabricated by a laser-based additive manufacturing technique from acid-resistant stainless steel 316L. The functionality of the microreactor was investigated by using an inverse electron demand Diels-Alder and subsequent retro Diels-Alder reaction for testing. Challenges and problems encountered are discussed and improvements proposed. Adsorption of reagents to the rough stainless steel channel walls, short length of the reaction channel, and making a proper ESI tip present challenges, but the microreactor is potentially useful as a disposable device.Peer reviewe

    Mechanical properties and microstructure of additively manufactured stainless steel with laser welded joints

    Get PDF
    AbstractPowder bed fusion (PBF) is a commonly employed metal additive manufacturing (AM) process in which components are built, layer-by-layer, using metallic powder. The component size is limited by the internal build volume of the employed PBF AM equipment; the fabrication of components larger than this volume therefore requires mechanical joining methods, such as laser welding. There are, however, very limited test data on the mechanical performance of PBF metal with laser welded joints. In this study, the mechanical properties of PBF built 316L stainless steel parts, joined together using laser welding to form larger components, have been investigated; the microstructure of the components has also been examined. 33 PBF 316L stainless steel tensile coupons, with central laser welds, welded using a range of welding parameters, and with coupon half parts built in two different orientations, were tested. The porosity, microhardness and microstructure of the welded coupons, along with the widths of the weld and heat-affected zone (HAZ), were characterised. The PBF base metal exhibited a typical cellular microstructure, while the weld consisted of equiaxed, columnar and cellular dendrite microstructures. Narrow weld regions and HAZs were observed. The PBF base metal was found to have higher proof and ultimate strengths, but a similar fracture strain and a lower Young’s modulus, compared with conventionally manufactured 316L stainless steel. The strengths were dependent on the build direction – the vertically built specimens showed lower proof strengths than the horizontal specimens. The laser welds generally exhibited lower microhardness, proof strengths and fracture strains than the PBF base metal which correlated with the observed structure. This work has demonstrated that PBF built parts can be joined by laser welding to form larger components and provided insight into the resulting strength and ductility.</p

    Galvanic exchange platinization reveals laser-inscribed pattern in 3D-LAM-printed steel

    Get PDF
    Galvanic exchange involving dissolution of iron and the simultaneous growth of platinum onto 316 L stainless steel was investigated for specimens manufactured by 3D-printing, and the behavior was compared to conventional stainless steel. Novel phenomena associated with the 3D-printed steel, but not conventional steel, reacting in three distinct phases were observed: first, with low platinum loading, a bright etching pattern linked to the laser-manufacturing process is revealed at the steel surface; second, a nanostructured pore pattern with platinum nano-deposits forms; and third, a darker platinum film coating of typically 500-nm thickness forms and then peels off the steel surface with further platinum growth underneath. Unlike the conventional steel (and mainly due to residual porosity), 3D-printed steel supports well-adhered platinum films for potential application in electrocatalysis, as demonstrated for alkaline methanol oxidation. [Figure not available: see fulltext.]</p

    Comparison of Laser-Engraved Hole Properties between Cold-Rolled and Laser Additive Manufactured Stainless Steel Sheets

    No full text
    Laser drilling and laser engraving are common manufacturing processes that are found in many applications. With the continuous progress of additive manufacturing (3D printing), these processes can now be applied to the materials used in 3D printing. However, there is a lack of knowledge about how these new materials behave when processed or machined. In this study, sheets of 316L stainless steel produced by both the traditional cold rolling method and by powder bed fusion (PBF) were laser drilled by a nanosecond pulsed fiber laser. Results were then analyzed to find out whether there are measurable differences in laser processing parts that are produced by either PBF (3D printing) or traditional steel parts. Hole diameters, the widths of burn effects, material removal rates, and hole tapers were measured and compared. Additionally, differences in microstructures of the samples were also analyzed and compared. Results show negligible differences in terms of material processing efficiency. The only significant differences were that the PBF sample had a wider burn effect, and had some defects in the microstructure that were more closely analyzed. The defects were found to be shallow recesses in the material. Some of the defects were deep within the material, at the end and start points of the laser lines, and some were close to the surfaces of the sample
    corecore