27 research outputs found
Experiment Selection in Meta-Analytic Piecemeal Causal Discovery.
Scientists try to design experiments that will yield maximal information. For instance, given the available evidence and a limitation on the number of variables that can be observed simultaneously, it may be more informative to intervene on variable X and observe the response of variable Y than to intervene on X and observe Z; in other situations, the opposite may be true. Scientists must often make these decisions without primary data. To address this problem, in previous work, we created software for annotating aggregate statistics in the literature and deriving consistent causal explanations, expressed as causal graphs. This meta-analytic pipeline is useful not only for synthesizing evidence but also for planning experiments: one can use it strategically to select experiments that could further eliminate causal graphs from consideration. In this paper, we introduce interpretable policies for selecting experiments in the context of piecemeal causal discovery, a common setting in biological sciences in which each experiment can measure not an entire system but rather a strict subset of its variables. The limits of this piecemeal approach are only beginning to be fully characterized, with crucial theoretical work published recently. With simulations, we show that our experiment-selection policies identify causal structures more efficiently than random experiment selection. Unlike methods that require primary data, our meta-analytic approach offers a flexible alternative for those seeking to incorporate qualitative domain knowledge into their search for causal mechanisms. We also present a method that categorizes hypotheses with respect to their utility for identifying a system's causal structure. Although this categorization is usually infeasible to perform manually, it is critical for conducting research efficiently
Computer-Aided Experiment Planning toward Causal Discovery in Neuroscience.
Computers help neuroscientists to analyze experimental results by automating the application of statistics; however, computer-aided experiment planning is far less common, due to a lack of similar quantitative formalisms for systematically assessing evidence and uncertainty. While ontologies and other Semantic Web resources help neuroscientists to assimilate required domain knowledge, experiment planning requires not only ontological but also epistemological (e.g., methodological) information regarding how knowledge was obtained. Here, we outline how epistemological principles and graphical representations of causality can be used to formalize experiment planning toward causal discovery. We outline two complementary approaches to experiment planning: one that quantifies evidence per the principles of convergence and consistency, and another that quantifies uncertainty using logical representations of constraints on causal structure. These approaches operationalize experiment planning as the search for an experiment that either maximizes evidence or minimizes uncertainty. Despite work in laboratory automation, humans must still plan experiments and will likely continue to do so for some time. There is thus a great need for experiment-planning frameworks that are not only amenable to machine computation but also useful as aids in human reasoning
Recommended from our members
Computer-Aided Experiment Planning toward Causal Discovery in Neuroscience.
Computers help neuroscientists to analyze experimental results by automating the application of statistics; however, computer-aided experiment planning is far less common, due to a lack of similar quantitative formalisms for systematically assessing evidence and uncertainty. While ontologies and other Semantic Web resources help neuroscientists to assimilate required domain knowledge, experiment planning requires not only ontological but also epistemological (e.g., methodological) information regarding how knowledge was obtained. Here, we outline how epistemological principles and graphical representations of causality can be used to formalize experiment planning toward causal discovery. We outline two complementary approaches to experiment planning: one that quantifies evidence per the principles of convergence and consistency, and another that quantifies uncertainty using logical representations of constraints on causal structure. These approaches operationalize experiment planning as the search for an experiment that either maximizes evidence or minimizes uncertainty. Despite work in laboratory automation, humans must still plan experiments and will likely continue to do so for some time. There is thus a great need for experiment-planning frameworks that are not only amenable to machine computation but also useful as aids in human reasoning
Recommended from our members
ResearchMaps.org for integrating and planning research.
To plan experiments, a biologist needs to evaluate a growing set of empirical findings and hypothetical assertions from diverse fields that use increasingly complex techniques. To address this problem, we operationalized principles (e.g., convergence and consistency) that biologists use to test causal relations and evaluate experimental evidence. With the framework we derived, we then created a free, open-source web application that allows biologists to create research maps, graph-based representations of empirical evidence and hypothetical assertions found in research articles, reviews, and other sources. With our ResearchMaps web application, biologists can systematically reason through the research that is most important to them, as well as evaluate and plan experiments with a breadth and precision that are unlikely without such a tool
Recommended from our members
Toward patient-tailored summarization of lung cancer literature*
As the volume of biomedical literature increases, it can be challenging for clinicians to stay up-to-date. Graphical summarization systems help by condensing knowledge into networks of entities and relations. However, existing systems present relations out of context, ignoring key details such as study population. To better support precision medicine, summarization systems should include such information to contextualize and tailor results to individual patients.This paper introduces “contextualized semantic maps” for patient-tailored graphical summarization of published literature. These efforts are demonstrated in the domain of driver mutations in non-small cell lung cancer (NSCLC). A representation for relations and study population context in NSCLC was developed. An annotated gold standard for this representation was created from a set of 135 abstracts; F1-score annotator agreement was 0.78 for context and 0.68 for relations. Visualizing the contextualized relations demonstrated that context facilitates the discovery of key findings that are relevant to patient-oriented queries