27 research outputs found

    ResearchMaps.org for integrating and planning research

    No full text

    Experiment Selection in Meta-Analytic Piecemeal Causal Discovery.

    No full text
    Scientists try to design experiments that will yield maximal information. For instance, given the available evidence and a limitation on the number of variables that can be observed simultaneously, it may be more informative to intervene on variable X and observe the response of variable Y than to intervene on X and observe Z; in other situations, the opposite may be true. Scientists must often make these decisions without primary data. To address this problem, in previous work, we created software for annotating aggregate statistics in the literature and deriving consistent causal explanations, expressed as causal graphs. This meta-analytic pipeline is useful not only for synthesizing evidence but also for planning experiments: one can use it strategically to select experiments that could further eliminate causal graphs from consideration. In this paper, we introduce interpretable policies for selecting experiments in the context of piecemeal causal discovery, a common setting in biological sciences in which each experiment can measure not an entire system but rather a strict subset of its variables. The limits of this piecemeal approach are only beginning to be fully characterized, with crucial theoretical work published recently. With simulations, we show that our experiment-selection policies identify causal structures more efficiently than random experiment selection. Unlike methods that require primary data, our meta-analytic approach offers a flexible alternative for those seeking to incorporate qualitative domain knowledge into their search for causal mechanisms. We also present a method that categorizes hypotheses with respect to their utility for identifying a system's causal structure. Although this categorization is usually infeasible to perform manually, it is critical for conducting research efficiently

    Computer-Aided Experiment Planning toward Causal Discovery in Neuroscience.

    Get PDF
    Computers help neuroscientists to analyze experimental results by automating the application of statistics; however, computer-aided experiment planning is far less common, due to a lack of similar quantitative formalisms for systematically assessing evidence and uncertainty. While ontologies and other Semantic Web resources help neuroscientists to assimilate required domain knowledge, experiment planning requires not only ontological but also epistemological (e.g., methodological) information regarding how knowledge was obtained. Here, we outline how epistemological principles and graphical representations of causality can be used to formalize experiment planning toward causal discovery. We outline two complementary approaches to experiment planning: one that quantifies evidence per the principles of convergence and consistency, and another that quantifies uncertainty using logical representations of constraints on causal structure. These approaches operationalize experiment planning as the search for an experiment that either maximizes evidence or minimizes uncertainty. Despite work in laboratory automation, humans must still plan experiments and will likely continue to do so for some time. There is thus a great need for experiment-planning frameworks that are not only amenable to machine computation but also useful as aids in human reasoning
    corecore