37 research outputs found

    Wavelength selection of vortex ripples in an oscillating cylinder: The effect of curvature and background rotation

    Get PDF
    We present results of laboratory experiments on the formation, evolution, and wavelength selection of vortex ripples. These ripples formed on a sediment bed at the bottom of a water-filled oscillating cylindrical tank mounted on top of a rotating table. The table is made to oscillate sinusoidally in time, while a constant background rotation was added for some experiments. The changes in bed thickness are measured using a light attenuation technique. It was found that the wavelength normalized with the excursion length depends on both a Reynolds number and the Strouhal number. This differs from straight or annular geometries where the wavelength is proportional to the excursion length. The flow in an oscillating cylinder has the peculiarity that it develops a secondary flow in the radial direction that depends on the excursion length. The effect of this secondary circulation is evident in the radial transport for small values of the Strouhal number or in the orientation of the ripples for strong enough background rotation. Additionally, ripples in an oscillating cylinder present a rich dynamic behavior where the number of ripples can oscillate even with constant forcing parameters

    Regime transitions in stratified shear flows: the link between horizontal and inclined ducts

    Get PDF
    We present an analytical model that provides the transition curves between different regimes of stratified shear flows in inclined ducts for high Schmidt number values. These curves are described by constant values of a generalized Reynolds number multiplied by the aspect ratio of the duct, showing good agreement with previous experimental results. The generalized Reynolds number is obtained by extending to inclined ducts the solution of a one-dimensional model of a stratified shear flow in a horizontal duct within a regime where advection is neglected in the momentum equation but included in the density transport equation

    Annual mean sea level in the Dutch Wadden Sea 2009-2011

    No full text
    Model data of mean sea level in the Dutch Wadden Sea, 2009-2011, to study inter-annual and regional variability of annual mean sea level

    Annual mean sea level in the Dutch Wadden Sea 2009-2011

    No full text
    Model data of mean sea level in the Dutch Wadden Sea, 2009-2011, to study inter-annual and regional variability of annual mean sea level

    Statistical Detection of Spatio-Temporal Patterns in the Salinity Field Within an Inter-Tidal Basin

    Get PDF
    Salinity is a key factor affecting biological processes and biodiversity in estuarine systems. This study investigates temporal and spatial changes in salinity at a basin-wide scale for 2005–2015 in the Dutch Wadden Sea. Scan statistics is applied to track salinity variations systematically and to detect potential clusters, i.e., estuarine regions marked by anomalous high-salinity (or low-salinity) values in a certain period (i.e., strong deviations from the expected value in a statistical sense). Clusters’ statistical significance has been assessed via Monte Carlo simulations. Particular attention is devoted to event-driven spatial and temporal patterns characterized by extreme salinity values since these episodes dramatically increase stress levels on organisms living in intertidal areas. Periodic components in the modeled salinity time series are identified using wavelet analysis and eventually removed from the signal before performing scan statistics. Wavelet analysis suggests that tides are the chief agent controlling salinity fluctuations in the system at within-day time scales, whereas no dominant periodicities were detected at longer time scales. Scan statistics reveal long-lasting clusters next to the main freshwater outlets and within the areas characterized by low water exchanges. In contrast, active regions of the estuary can efficiently counteract extreme events and quickly recover their pre-perturbation conditions. Finally, by analyzing the freshwater dispersal in the system, it is found that clusters’ occurrence is related to episodic events characterized by extreme conditions in the southwesterly wind and freshwater discharge. This research demonstrates that scan statistics can be used as a powerful tool for spatiotemporal analyses of marine systems and for identifying data-clustering that may be indicative of emerging environmental hazards (e.g., due to climate change)

    Residual circulation and freshwater retention within an event-driven system of intertidal basins

    No full text
    This study explores the spatiotemporal variability in the residual circulation and its dependence on external forces in an interconnected system of intertidal basins. We focus on the Dutch Wadden Sea (DWS), where winds play a major role in water movements and storms significantly affect its short-term characteristics. We make use of realistic three-dimensional high-resolution numerical simulations to model the hydrodynamics in the DWS for the years 2005–2015. First, the ‘empirical orthogonal function’ method is applied to analyze systematically the relative contributions of various forcing mechanisms on the residual (i.e., tidally averaged) volume flow through the inlets and the shallow watersheds delimiting the system and each tidal basin. Then, we compute the tidally averaged flushing frequency of fresh water over the entire period of analysis, and we study its variations at short and long time scales. It is found that over 98% of the residual flow's spatiotemporal variations can be explained by the first three EOF modes, which are highly correlated with the cubic power of the vectorial wind components' speed and the amount of fresh water discharged into the back-barrier system. This study reveals that incidental short-duration events (e.g., storms) occurring at time scales of hours to days, albeit episodic and highly variable, strongly influence the residual transport's inter-annual variability and its long-term typical value in multiple-inlet coastal systems
    corecore