24 research outputs found

    The Effect of Gonadal Hormones on Agonistic Behavior in Previously Defeated Female and Male Syrian Hamsters

    Get PDF
    Following social defeat, male hamsters exhibit behavioral changes characterized by a breakdown of normal territorial aggression and an increase in submissive/defensive behaviors in the presence of a non-aggressive intruder (NAI). We have termed this phenomenon conditioned defeat (CD). By contrast, only a small subset of defeated females exhibit submissive/defensive behavior in the presence of a NAI. We hypothesized that fluctuations in gonadal hormones might contribute to differences in the display of submissive behavior in intact female hamsters. Following social defeat, proestrous females (higher endogenous estradiol) were more likely to display conditioned defeat compared with diestrous 1 (lower endogenous estradiol) females. This finding suggests that there is an estrous cycle-dependent fluctuation in the display of CD in female hamsters and suggests that increased estradiol might contribute to increased submissive behavior. We then demonstrated that ovariectomized females given estradiol prior to CD testing exhibited significantly higher submissive behavior in the presence of a NAI suggesting that estradiol increases the expression of CD in female hamsters. We have also shown that castrated males that were singly housed for four weeks displayed significantly more submissive behavior than did their intact counterparts. Interestingly, castrated and intact males that were singly housed for 10 days prior to behavioral testing displayed similar behavior during CD testing. Together these data suggest that androgens and isolation modulate the display of CD in male hamsters. Finally, we examined brain activation following CD testing in defeated males and females (in diestrus 1 and proestrus). Defeated male and proestrous females exhibited increased Fos activation in the dorsal lateral septum and hypothalamic paraventricular nucleus relative to defeated diestrous 1 females. Diestrous 1 females exhibited increased Fos expression in the lateral bed nucleus of the stria terminalis compared with both defeated groups. Collectively, these data suggest that gonadal hormones and duration of individual housing modulate the display of CD in female and male hamsters and that those animals which display CD exhibit differences in patterns of neuronal activation than do those that do not display CD

    Adolescent environmental enrichment prevents behavioral and physiological sequelae of adolescent chronic stress in female (but not male) rats

    No full text
    <p>The late adolescent period is characterized by marked neurodevelopmental and endocrine fluctuations in the transition to early adulthood. Adolescents are highly responsive to the external environment, which enhances their ability to adapt and recover from challenges when given nurturing influences, but also makes them vulnerable to aberrant development when exposed to prolonged adverse situations. Female rats are particularly sensitive to the effects of chronic stress in adolescence, which manifests as passive coping strategies and blunted hypothalamo-pituitary adrenocortical (HPA) stress responses in adulthood. We sought to intervene by exposing adolescent rats to environmental enrichment (EE) immediately prior to and during chronic stress, hypothesizing that EE would minimize or prevent the long-term effects of stress that emerge in adult females. To test this, we exposed male and female rats to EE on postnatal days (PND) 33–60 and implemented chronic variable stress (CVS) on PND 40–60. CVS consisted of twice-daily unpredictable stressors. Experimental groups included: CVS/unenriched, unstressed/EE, CVS/EE and unstressed/unenriched (<i>n</i> = 10 of each sex/group). In adulthood, we measured behavior in the open field test and forced swim test (FST) and collected blood samples following the FST. We found that environmental enrichment given during the adolescent period prevented the chronic stress-induced transition to passive coping in the FST and reversed decreases in peak adrenocortical responsiveness observed in adult females. Adolescent enrichment had little to no effect on males or unstressed females tested in adulthood, indicating that beneficial effects are specific to females that were exposed to chronic stress.</p

    Stress activation of IL-6 neurons in the hypothalamus

    No full text
    An emerging literature attests to the ability of psychological stress to alter the inflammatory cytokine environment of the body. While the ability of stress to cause cytokine release is well established, the neural pathways involved in this control have yet to be identified. This study tests the hypothesis that IL-6 neurons of the hypothalamo-neurohypophyseal system (HNS), a neural pathway proposed to secrete IL-6 into the circulation, are activated in response to psychological stress. Colocalization studies confirm robust expression of IL-6 in cell bodies and fibers of vasopressin (but not oxytocin) neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the rat hypothalamus. In response to restraint, there was a greater increase in c-Fos expression in SON IL-6-positive (IL-6+) neurons. In addition, both psychogenic (restraint) or systemic stress (hypoxia) lead to phosphorylated ERK induction only in IL-6+ magnocellular neurons, indicating selective activation of the MAPK signaling pathway in the IL-6 subset of magnocellular neurons. Finally, restraint upregulated IL-6 mRNA expression in both the PVN and SON, which was accompanied by a four-fold increase in circulating IL-6. The data indicate that noninflammatory stressors selectively activate IL-6 magnocellular neurons, upregulate IL-6 gene expression in the PVN and SON, and increase plasma IL-6. In summary, results show that IL-6 neurons of the HNS are a recruited component of the response to psychological stress
    corecore