5,109 research outputs found

    SU(N) Coherent States

    Full text link
    We generalize Schwinger boson representation of SU(2) algebra to SU(N) and define coherent states of SU(N) using 2(2N11)2(2^{N-1}-1) bosonic harmonic oscillator creation and annihilation operators. We give an explicit construction of all (N-1) Casimirs of SU(N) in terms of these creation and annihilation operators. The SU(N) coherent states belonging to any irreducible representations of SU(N) are labelled by the eigenvalues of the Casimir operators and are characterized by (N-1) complex orthonormal vectors describing the SU(N) manifold. The coherent states provide a resolution of identity, satisfy the continuity property, and possess a variety of group theoretic properties.Comment: 25 pages, LaTex, no figure

    Short-wavelength secondary instabilities in homogeneous and stably stratified shear flows

    Full text link
    We present a numerical investigation of three-dimensional, short-wavelength linear instabilities in Kelvin-Helmholtz (KH) vortices in homogeneous and stratified environments. The base flow, generated using two-dimensional numerical simulations, is characterized by the Reynolds number and the Richardson number defined based on the initial one-dimensional velocity and buoyancy profiles. The local stability equations are then solved on closed streamlines in the vortical base flow, which is assumed quasi-steady. For the unstratified case, the elliptic instability at the vortex core dominates at early times, before being taken over by the hyperbolic instability at the vortex edge. For the stratified case, the early time instabilities comprise a dominant elliptic instability at the core and a hyperbolic instability strongly influenced by stratification at the vortex edge. At intermediate times, the local approach shows a new branch of instability (convective branch) that emerges at the vortex core and subsequently moves towards the vortex edge. A few more convective instability branches appear at the vortex core and move away, before coalescing to form the most unstable region inside the vortex periphery at large times. The dominant instability characteristics from the local approach are shown to be in good qualitative agreement with results from global instability studies for both homogeneous and stratified cases. Compartmentalized analyses are then used to elucidate the role of shear and stratification on the identified instabilities. The role of buoyancy is shown to be critical after the primary KH instability saturates, with the dominant convective instability shown to occur in regions with the strongest statically unstable layering. We conclude by highlighting the potentially insightful role that the local approach may offer in understanding the secondary instabilities in other flows.Comment: Submitted to J. Fluid Mech., 20 pages, 10 figure

    The Composite Spectrum of Strong Lyman-alpha Forest Absorbers

    Get PDF
    We present a new method for probing the physical conditions and metal enrichment of the Intergalactic Medium: the composite spectrum of Ly-alpha forest absorbers. We apply this technique to a sample of 9480 Ly-alpha absorbers with redshift 2 < z < 3.5 identified in the spectra of 13,279 high-redshift quasars from the Sloan Digital Sky Survey (SDSS) Fifth Data Release (DR5). Absorbers are selected as local minima in the spectra with 2.4 < tau_Ly-alpha < 4.0; at SDSS resolution (~ 150km/s FWHM), these absorbers are blends of systems that are individually weaker. In the stacked spectra we detect seven Lyman-series lines and metal lines of O VI, N V, C IV, C III, Si IV, C II, Al II, Si II, Fe II, Mg II, and O I. Many of these lines have peak optical depths of < 0.02, but they are nonetheless detected at high statistical significance. Modeling the Lyman-series measurements implies that our selected systems have total H I column densities N_HI ~ 10^15.4cm-2. Assuming typical physical conditions rho / = 10, T = 10^4 - 10^4.5 K, and [Fe/H]= -2 yields reasonable agreement with the line strengths of high-ionization species, but it underpredicts the low-ionization species by two orders of magnitude or more. This discrepancy suggests that the low ionization lines arise in dense, cool, metal-rich clumps, present in some absorption systems.Comment: 7 pages, 4 figures, 1 table, accepted by ApJL, revisions mad

    A (1,2) Heterotic String with Gauge Symmetry

    Get PDF
    We construct a (1,2) heterotic string with gauge symmetry and determine its particle spectrum. This theory has a local N=1 worldsheet supersymmetry for left movers and a local N=2 worldsheet supersymmetry for right movers and describes particles in either two or three space-time dimensions. We show that fermionizing the bosons of the compactified N=1 space leads to a particle spectrum which has nonabelian gauge symmetry. The fermionic formulation of the theory corresponds to a dimensional reduction of self dual Yang Mills. We also give a worldsheet action for the theory and calculate the one-loop path integral.Comment: 17 pages, added reference

    Quasar Evolution and the Baldwin Effect in the Large Bright Quasar Survey

    Full text link
    From a large homogeneous sample of optical/UV emission line measurements for 993 quasars from the Large Bright Quasar Survey (LBQS), we study correlations between emission line equivalent width and both restframe ultraviolet luminosity (i.e., the Baldwin Effect) and redshift. Our semi-automated spectral fitting accounts for absorption lines, fits blended iron emission, and provides upper limits to weak emission lines. Use of a single large, well-defined sample and consistent emission line measurements allows us to sensitively detect many correlations, most of which have been previously noted. A new finding is a significant Baldwin Effect in UV iron emission. Further analysis reveals that the primary correlation of iron emission strength is probably with redshift, implying an evolutionary rather than a luminosity effect. We show that for most emission lines with a significant Baldwin Effect, and for some without, evolution dominates over luminosity effects. This may reflect evolution in abundances, in cloud covering factors, or overall cloud conditions such as density and ionization. We find that in our sample, a putative correlation between Baldwin Effect slope and the ionization potential is not significant. Uniform measurements of other large quasar samples will extend the luminosity and redshift range of such spectral studies and provide even stronger tests of spectral evolution.Comment: 16 pages, Latex, emulateapj style, including 3 tables and 6 figures. Accepted April 02, 2001 for publication in ApJ Main Journal. See also http://hea-www.harvard.edu/~pgreen/Papers.htm
    corecore