8,802 research outputs found

    Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses

    Get PDF
    Random-effects meta-analyses of observational studies can produce biased estimates if the synthesized studies are subject to unmeasured confounding. We propose sensitivity analyses quantifying the extent to which unmeasured confounding of specified magnitude could reduce to below a certain threshold the proportion of true effect sizes that are scientifically meaningful. We also develop converse methods to estimate the strength of confounding capable of reducing the proportion of scientifically meaningful true effects to below a chosen threshold. These methods apply when a "bias factor" is assumed to be normally distributed across studies or is assessed across a range of fixed values. Our estimators are derived using recently proposed sharp bounds on confounding bias within a single study that do not make assumptions regarding the unmeasured confounders themselves or the functional form of their relationships to the exposure and outcome of interest. We provide an R package, ConfoundedMeta, and a freely available online graphical user interface that compute point estimates and inference and produce plots for conducting such sensitivity analyses. These methods facilitate principled use of random-effects meta-analyses of observational studies to assess the strength of causal evidence for a hypothesis

    Chandra discovery of the intracluster medium around UM425 at redshift 1.47

    Full text link
    We report on a discovery of a candidate cluster of galaxies at redshift z=1.47 based on Chandra observations in the field of quasars UM425 A & B. We detect with high significance diffuse emission due the intracluster hot gas around the quasar pair. This is the second highest redshift cluster candidate after 3C294 at z=1.786. The diffuse emission is elliptical in shape with about 17" extent. If indeed at z=1.47, this corresponds to a physical size of 140 h_{70}^{-1} Kpc and 2--10 keV luminosity of about 3 times 10^{43} erg/s. The cluster is unlikely to be the long sought gravitational lens invoked to explain unusual brightness of UM425 A and the close quasar pair. Coexistence of the quasars with the cluster suggests a link of activity to cluster environment. The unusual brightness of UM425 A may then be due to a higher accretion rate. We also comment briefly on the X-ray spectra of UM 425 A & B which also happen to be broad absorption line quasars. We argue that present evidence suggests that the quasars are just a pair and not lensed images of the same quasar.Comment: Submitted to ApJ Letter

    Bone marrow mononuclear cells and acute myocardial infarction

    Get PDF
    PMCID: PMC3340546This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Chandra LETGS spectroscopy of the Quasar MR2251-178 and its warm absorber

    Full text link
    We present an analysis of our Chandra Low Energy Transmission Grating Spectrometer (LETGS) observation of the quasar MR2251-178. The warm absorber of MR2251-178 is well described by a hydrogen column density, N_H~2x10^21 cm^-2, and an ionization parameter log(xi)~0.6. We find in the spectrum weak evidence for narrow absorption lines from Carbon and Nitrogen which indicate that the ionized material is in outflow. We note changes (in time) of the absorption structure in the band (0.6-1) keV (around the UTAs plus the OVII and OVIII K-edges) at different periods of the observation. We measure a (0.1-2) keV flux of 2.58x10^-11 ergs cm^-2 s^-1. This flux implies that the nuclear source of MR2251-178 is in a relatively low state. No significant variability is seen in the light curve. We do not find evidence for an extra cold material in the line of sight, and set an upper limit of N_H~1.2x10^20 cm^-2. The X-ray spectrum does not appear to show evidence for dusty material, though an upper limit in the neutral carbon and oxygen column densities can only be set to N_CI~2x10^19 cm^-2 and N_OI~9x10^19 cm^-2, respectively.Comment: 42 pages, 12 figures, Accepted in Apj. Typo in abstract (ver2): "We do not find evidence for an extra...
    • …
    corecore