233 research outputs found

    Theory of Spin-Transfer Torque in the Current-in-Plane Geometries

    Full text link
    Two alternative current-induced switching geometries, in which the current flows parallel to the magnet/nonmagnet interface, are investigated theoretically using the nonequilibrium Keldysh theory. In the first geometry, the current is perpendicular to the polarizing magnet/nonmagnet interface but parallel to the nonmagnet/switching magnet interface (CPIP). In the second geometry, the current is parallel to both the polarizing magnet/nonmagnet and nonmagnet/switching magnet interfaces (CIP). Calculations for a single-orbital tight binding model indicate that the spin current flowing parallel to the switching magnet/nonmagnet interface can be absorbed by a lateral switching magnet as efficiently as in the traditional current-perpendicular-to-plane (CPP) geometry. The results of the model calculations are shown to be valid also for experimentally relevant Co/Cu CPIP system described by fully realistic tight binding bands fitted to an ab initio band structure. It is shown that almost complete absorption of the incident spin current by a lateral switching magnet occurs when the lateral dimensions of the switching magnet are of the order of 50-100 interatomic distances, i.e., about 20nm and its height as small as a few atomic planes. It is also demonstratedthat strong spin current absorption in the CPIP/CIP geometry is not spoilt by the presence of a rough interface between the switching magnet and nonmagnetic spacer. Polarization achieved using a lateral magnet in the CIP geometry is found to be about 25% of that in the traditional CPP geometry. The present CPIP calculations of the spin transfer torque are also relevant to the so called pure-spin-current-induced magnetization switching that had been recently observed.Comment: 9 pages 8 figure

    Systematic Two-band Model Calculations of the GMR Effect with Metallic and Nonmetallic Spacers and with Impurities

    Full text link
    By an accurate Green's function method we calculate conductances and the corresponding Giant Magneto-Resistance effects (GMR) of two metallic ferromagnetic films separated by different spacers, metallic and non-metallic ones, in a simplified model on a sc lattice, in CPP and CIP geometries (i.e. current perpendicular or parallel to the planes), without impurities, or with interface- or bulk impurities. The electronic structure of the systems is approximated by two hybridized orbitals per atom, to mimic s-bands and d-bands and their hybridization. We show that such calculations usually give rough estimates only, but of the correct order of magnitude; in particular, the predictions on the impurity effects depend strongly on the model parameters. One of our main results is the prediction of huge CPP-GMR effects for {\it non-metallic} spacers in the ballistic limit.Comment: Revised version; discussions and references improved; accepted by JMM

    Quantum oscillation of magnetoresistance in tunneling junctions with a nonmagnetic spacer

    Full text link
    We make a theoretical study of the quantum oscillations of the tunneling magnetoresistance (TMR) as a function of the spacer layer thickness. Such oscillations were recently observed in tunneling junctions with a nonmagnetic metallic spacer at the barrier-electrode interface. It is shown that momentum selection due to the insulating barrier and conduction via quantum well states in the spacer, mediated by diffusive scattering caused by disorder, are essential features required to explain the observed period of oscillation in the TMR ratio and its asymptotic value for thick nonmagnetic spacer.Comment: 4 pages, 5 figures, two column, REVTex4 styl

    Dynamics of the magnetic and structural a -> e phase transition in Iron

    Full text link
    We have studied the high-pressure iron bcc to hcp phase transition by simultaneous X-ray Magnetic Circular Dichroism (XMCD) and X-ray Absorption Spectroscopy (XAS) with an X-ray dispersive spectrometer. The combination of the two techniques allows us to obtain simultaneously information on both the structure and the magnetic state of Iron under pressure. The magnetic and structural transitions simultaneously observed are sharp. Both are of first order in agreement with theoretical prediction. The pressure domain of the transition observed (2.4 ±\pm 0.2 GPa) is narrower than that usually cited in the literature (8 GPa). Our data indicate that the magnetic transition slightly precedes the structural one, suggesting that the origin of the instability of the bcc phase in iron with increasing pressure is to be attributed to the effect of pressure on magnetism as predicted by spin-polarized full potential total energy calculations

    The role of symmetry on interface states in magnetic tunnel junctions

    Full text link
    When an electron tunnels from a metal into the barrier in a magnetic tunnel junction it has to cross the interface. Deep in the metal the eigenstates for the electron can be labelled by the point symmetry group of the bulk but around the interface this symmetry is reduced and one has to use linear combinations of the bulk states to form the eigenstates labelled by the irreducible representations of the point symmetry group of the interface. In this way there can be states localized at the interface which control tunneling. The conclusions as to which are the dominant tunneling states are different from that conventionally found.Comment: 14 pages, 5 figures, accepted in PRB, v2: reference 3 complete

    EXAFS investigations of iodine-doped carbon nanotubes

    Get PDF
    International audienceWe report an x-ray absorption fine structure study at the iodine-K edge of the local structure in iodine-doped carbon nanotubes. The iodine-carbon host interaction is shown to be weaker in multiwalled carbon nanotubes (MWNTs) than in single-walled carbon nanotubes (SWNTs). Iodine species are only localized at the surface of the external tube for MWNTs, whereas iodine species enter inside SWNTs. For doped SWNTs, both the experimental and the theoretical EXAFS spectra allow us to establish the structure of the iodine chain as disordered pentaiodide at the saturation level
    corecore