571 research outputs found
Nanoflare Activity in the Solar Chromosphere
We use ground-based images of high spatial and temporal resolution to search
for evidence of nanoflare activity in the solar chromosphere. Through close
examination of more than 10^9 pixels in the immediate vicinity of an active
region, we show that the distributions of observed intensity fluctuations have
subtle asymmetries. A negative excess in the intensity fluctuations indicates
that more pixels have fainter-than-average intensities compared with those that
appear brighter than average. By employing Monte Carlo simulations, we reveal
how the negative excess can be explained by a series of impulsive events,
coupled with exponential decays, that are fractionally below the current
resolving limits of low-noise equipment on high-resolution ground-based
observatories. Importantly, our Monte Carlo simulations provide clear evidence
that the intensity asymmetries cannot be explained by photon-counting
statistics alone. A comparison to the coronal work of Terzo et al. (2011)
suggests that nanoflare activity in the chromosphere is more readily occurring,
with an impulsive event occurring every ~360s in a 10,000 km^2 area of the
chromosphere, some 50 times more events than a comparably sized region of the
corona. As a result, nanoflare activity in the chromosphere is likely to play
an important role in providing heat energy to this layer of the solar
atmosphere.Comment: 7 pages, 3 figures, accepted into Ap
Understanding Astrophysical Noise from Stellar Surface Magneto-Convection
To obtain cm/s precision, stellar surface magneto-convection must be
disentangled from observed radial velocities (RVs). In order to understand and
remove the convective signature, we create Sun-as-a-star model observations
based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star
model observations, we find several line characteristics are correlated with
the induced RV shifts. The aim of this campaign is to feed directly into future
high precision RV studies, such as the search for habitable, rocky worlds, with
forthcoming spectrographs such as ESPRESSO.Comment: 6 pages, 3 figures; presented at the 18th Cambridge Workshop on Cool
Stars, Stellar Systems, and the Sun (CoolStars18); to appear in the
proceedings of Lowell Observatory (9-13 June 2014), edited by G. van Belle &
H. Harris. Updated with correct y-axis units on righthand plot in figure
Alfv\'en waves in simulations of solar photospheric vortices
Using advanced numerical magneto-hydrodynamic simulations of the magnetised
solar photosphere, including non-grey radiative transport and a non-ideal
equation of state, we analyse plasma motions in photospheric magnetic vortices.
We demonstrate that apparent vortex-like motions in photospheric magnetic field
concentrations do not exhibit "tornado"-like behaviour or a "bath-tub" effect.
While at each time instance the velocity field lines in the upper layers of the
solar photosphere show swirls, the test particles moving with the
time-dependent velocity field do not demonstrate such structures. Instead, they
move in a wave-like fashion with rapidly changing and oscillating velocity
field, determined mainly by magnetic tension in the magnetised intergranular
downflows. Using time-distance diagrams, we identify horizontal motions in the
magnetic flux tubes as torsional Alfv\'en perturbations propagating along the
nearly vertical magnetic field lines with local Alfv\'en speed.Comment: 5 pages, 4 figures, accepted to ApJ
Plasma properties and Stokes profiles during the lifetime of a photospheric magnetic bright point
Aims: to investigate the evolution of plasma properties and Stokes parameters
in photospheric magnetic bright points using 3D magneto-hydrodynamical
simulations and radiative diagnostics of solar granulation. Methods: simulated
time-dependent radiation parameters and plasma properties were investigated
throughout the evolution of a bright point. Synthetic Stokes profiles for the
FeI 630.25 nm line were calculated, which allowed the evolution of the Stokes-I
line strength and Stokes-V area and amplitude asymmetries to also be
investigated. Results: our results are consistent with theoretical predictions
and published observations describing convective collapse, and confirm this as
the bright point formation process. Through degradation of the simulated data
to match the spatial resolution of SOT, we show that high spatial resolution is
crucial for the detection of changing spectro-polarimetric signatures
throughout a magnetic bright point's lifetime. We also show that the signature
downflow associated with the convective collapse process is reduced towards
zero as the radiation intensity in the bright point peaks, due to the magnetic
forces present restricting the flow of material in the flux tube.Comment: 14 pages, 12 figures, accepted to A&
Chromospheric Inversions of a Micro-flaring Region
We use spectropolarimetric observations of the Ca II 8542~\AA\ line, taken
from the Swedish 1-m Solar Telescope (SST), in an attempt to recover dynamic
activity in a micro-flaring region near a sunspot via inversions. These
inversions show localized mean temperature enhancements of 1000~K in the
chromosphere and upper photosphere, along with co-spatial bi-directional
Doppler shifting of 5 - 10 km s. This heating also extends along a
nearby chromospheric fibril, co-spatial to 10 - 15 km s down-flows.
Strong magnetic flux cancellation is also apparent in one of the footpoints,
concentrated in the chromosphere. This event more closely resembles that of an
Ellerman Bomb (EB), though placed slightly higher in the atmosphere than is
typically observed.Comment: 9 pages, 9 figures, accepted in ApJ. Movies are stored here:
https://star.pst.qub.ac.uk/webdav/public/areid/Microflare
Wireless Sensor Networks:A case study for Energy Efficient Environmental Monitoring
Energy efficiency is a key issue for wireless sensor networks, since sensors nodes can often be powered by non-renewable batteries. In this paper, we examine four MAC protocols in terms of energy consumption, throughput and energy efficiency. A forest fire detection application has been simulated using the well-known ns-2 in order to fully evaluate these protocols
An assessment of Fe XX - Fe XXII emission lines in SDO/EVE data as diagnostics for high density solar flare plasmas using EUVE stellar observations
The Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics
Observatory obtains extreme-ultraviolet (EUV) spectra of the full-disk Sun at a
spectral resolution of ~1 A and cadence of 10 s. Such a spectral resolution
would normally be considered to be too low for the reliable determination of
electron density (N_e) sensitive emission line intensity ratios, due to
blending. However, previous work has shown that a limited number of Fe XXI
features in the 90-60 A wavelength region of EVE do provide useful
N_e-diagnostics at relatively low flare densities (N_e ~ 10^11-10^12 cm^-3).
Here we investigate if additional highly ionised Fe line ratios in the EVE
90-160 A range may be reliably employed as N_e-diagnostics. In particular, the
potential for such diagnostics to provide density estimates for high N_e
(~10^13 cm^-3) flare plasmas is assessed. Our study employs EVE spectra for
X-class flares, combined with observations of highly active late-type stars
from the Extreme Ultraviolet Explorer (EUVE) satellite plus experimental data
for well-diagnosed tokamak plasmas, both of which are similar in wavelength
coverage and spectral resolution to those from EVE. Several ratios are
identified in EVE data which yield consistent values of electron density,
including Fe XX 113.35/121.85 and Fe XXII 114.41/135.79, with confidence in
their reliability as N_e-diagnostics provided by the EUVE and tokamak results.
These ratios also allow the determination of density in solar flare plasmas up
to values of ~10^13 cm^-3.Comment: 7 pages, 3 figures, 2 tables, MNRAS in pres
Stable Umbral Chromospheric Structures
Aims. To understand the morphology of the chromosphere in sunspot umbra. We
investigate if the horizontal structures observed in the spectral core of the
Ca II H line are ephemeral visuals caused by the shock dynamics of more stable
structures, and examine their relationship with observables in the H-alpha
line. Methods. Filtergrams in the core of the Ca II H and H-alpha lines as
observed with the Swedish 1-m Solar Telescope are employed. We utilise a
technique that creates composite images and tracks the flash propagation
horizontally. Results. We find 0"15 wide horizontal structures, in all of the
three target sunspots, for every flash where the seeing was moderate to good.
Discrete dark structures are identified that are stable for at least two umbral
flashes, as well as systems of structures that live for up to 24 minutes. We
find cases of extremely extended structures with similar stability, with one
such structure showing an extent of 5". Some of these structures have a
correspondence in H-alpha but we were unable to find a one to one
correspondence for every occurrence. If the dark streaks are formed at the same
heights as umbral flashes then there are systems of structures with strong
departures from the vertical for all three analysed sunspots. Conclusions.
Long-lived Ca II H filamentary horizontal structures are a common and likely
ever-present feature in the umbra of sunspots. If the magnetic field in the
chromosphere of the umbra is indeed aligned with the structures, then the
present theoretical understanding of the typical umbra needs to be revisited.Comment: Accepted to Astronomy and Astrophysics. Online material (Fig3.mov and
Fig4.mov) will be available at A&
A Hot Downflowing Model Atmosphere For Umbral Flashes And The Physical Properties Of Their Dark Fibrils
We perform NLTE inversions in a large set of umbral flashes, including the
dark fibrils visible within them, and in the quiescent umbra by using the
inversion code NICOLE on a set of full Stokes high-resolution Ca II 8542 A
observations of a sunspot at disk center. We find that the dark structures have
Stokes profiles that are distinct from those of the quiescent and flashed
regions. They are best reproduced by atmospheres that are more similar to the
flashed atmosphere in terms of velocities, even if with reduced amplitudes. We
also find two sets of solutions that finely fit the flashed profiles: a set
that is upflowing, featuring a transition region that is deeper than in the
quiescent case and preceded by a slight dip in temperature, and a second
solution with a hotter atmosphere in the chromosphere but featuring downflows
close to the speed of sound at such heights. Such downflows may be related, or
even dependent, on the presence of coronal loops, rooted in the umbra of
sunspots, as is the case in the region analyzed. Similar loops have been
recently observed to have supersonic downflows in the transition region and are
consistent with the earlier "sunspot plumes" which were invariably found to
display strong downflows in sunspots. Finally we find, on average, a magnetic
field reduction in the flashed areas, suggesting that the shock pressure is
moving field lines in the upper layers.Comment: Accepted in June for publication at ApJ. Comments to
[email protected] or [email protected]
- …