15 research outputs found

    A Quick Mind with Letters Can Be a Slow Mind with Natural Scenes: Individual Differences in Attentional Selection

    Get PDF
    Background Most people show a remarkable deficit in reporting the second of two targets (T2) when presented 200–500 ms after the first (T1), reflecting an ‘attentional blink’ (AB). However, there are large individual differences in the magnitude of the effect, with some people, referred to as ‘non-blinkers’, showing no such attentional restrictions. Methodology/Principal Findings Here we replicate these individual differences in a task requiring identification of two letters amongst digits, and show that the observed differences in T2 performance cannot be attributed to individual differences in T1 performance. In a second experiment, the generality of the non-blinkers' superior performance was tested using a task containing novel pictures rather than alphanumeric stimuli. A substantial AB was obtained in non-blinkers that was equivalent to that of ‘blinkers’. Conclusion/Significance The results suggest that non-blinkers employ an efficient target selection strategy that relies on well-learned alphabetic and numeric category sets.University of Groningen. Research School Behavioural and Cognitive Neuroscience

    Musical Minds:Attentional Blink Reveals Modality-Specific Restrictions

    Get PDF
    Formal musical training is known to have positive effects on attentional and executive functioning, processing speed, and working memory. Consequently, one may expect to find differences in the dynamics of temporal attention between musicians and non-musicians. Here we address the question whether that is indeed the case, and whether any beneficial effects of musical training on temporal attention are modality specific or generalize across sensory modalities.When two targets are presented in close temporal succession, most people fail to report the second target, a phenomenon known as the attentional blink (AB). We measured and compared AB magnitude for musicians and non-musicians using auditory or visually presented letters and digits. Relative to non-musicians, the auditory AB was both attenuated and delayed in musicians, whereas the visual AB was larger. Non-musicians with a large auditory AB tended to show a large visual AB. However, neither a positive nor negative correlation was found in musicians, suggesting that at least in musicians, attentional restrictions within each modality are completely separate.AB magnitude within one modality can generalize to another modality, but this turns out not to be the case for every individual. Formal musical training seems to have a domain-general, but modality-specific beneficial effect on selective attention. The results fit with the idea that a major source of attentional restriction as reflected in the AB lies in modality-specific, independent sensory systems rather than a central amodal system. The findings demonstrate that individual differences in AB magnitude can provide important information about the modular structure of human cognition

    Musical Minds: Attentional blink reveals modality-specific restrictions

    Full text link

    Target accuracy in Experiment 1B.

    No full text
    <p>Mean percentage correct report of T1 (dotted lines) and T2 given correct report of T1 (solid lines) as a function of SOA for blinkers (square symbols) and non-blinkers (circle symbols) in the picture AB task of Experiment 1B.</p

    Target accuracy in Experiment 1A.

    No full text
    <p>Mean percentage correct report of T1 (dotted lines) and T2 given correct report of T1 (solid lines) as a function of SOA for candidate blinkers (square symbols) and non-blinkers (circle symbols) in the alphanumeric AB task of Experiment 1A.</p

    The estimates and z-values of the mixed-effects model for T1 accuracy of the visual AB experiment.

    No full text
    <p>The estimates of the fixed effects are given in log odds.</p><p>The estimates and z-values of the mixed-effects model for T1 accuracy of the visual AB experiment.</p

    Auditory T1 performance in Experiment 1.

    No full text
    <p>Predicted probability of correct T1 identification as a function of stimulus onset asynchrony (SOA) between the two auditory targets, for non-musicians and musicians. Error bars reflect upper and lower confidence limits of the model.</p

    Visual T2|T1 performance in Experiment 2.

    No full text
    <p>Predicted probability of T2 given correct report of T1, as a function of stimulus onset asynchrony (SOA) between the two visual targets, for non-musicians and musicians. Error bars reflect upper and lower confidence limits of the model.</p

    Auditory T2|T1 performance in Experiment 1.

    No full text
    <p>Predicted probability of T2 given correct report of T1, as a function of stimulus onset asynchrony (SOA) between the two auditory targets, for non-musicians and musicians. Error bars reflect upper and lower confidence limits of the model.</p
    corecore