1,548 research outputs found

    Microbiology of digestion in the Svalbard reindeer (Rangifer tarandus platyrhynchus)

    Get PDF
    Microbiology of digestion in the Svalbard reindee

    Emergence of diversity in a model ecosystem

    Full text link
    The biological requirements for an ecosystem to develop and maintain species diversity are in general unknown. Here we consider a model ecosystem of sessile and mutually excluding organisms competing for space [Mathiesen et al. Phys. Rev. Lett. 107, 188101 (2011)]. The competition is controlled by an interaction network with fixed links chosen by a Bernoulli process. New species are introduced in the system at a predefined rate. In the limit of small introduction rates, the system becomes bistable and can undergo a phase transition from a state of low diversity to high diversity. We suggest that patches of isolated meta-populations formed by the collapse of cyclic relations are essential for the transition to the state of high diversity.Comment: 7 pages, 6 figures. Accepted for publication in PRE. Typos corrected, Fig.3A and Fig.6 update

    Ecosystems with mutually exclusive interactions self-organize to a state of high diversity

    Full text link
    Ecological systems comprise an astonishing diversity of species that cooperate or compete with each other forming complex mutual dependencies. The minimum requirements to maintain a large species diversity on long time scales are in general unknown. Using lichen communities as an example, we propose a model for the evolution of mutually excluding organisms that compete for space. We suggest that chain-like or cyclic invasions involving three or more species open for creation of spatially separated sub-populations that subsequently can lead to increased diversity. In contrast to its non-spatial counterpart, our model predicts robust co-existence of a large number of species, in accordance with observations on lichen growth. It is demonstrated that large species diversity can be obtained on evolutionary timescales, provided that interactions between species have spatial constraints. In particular, a phase transition to a sustainable state of high diversity is identified.Comment: 4 pages, 4 figure

    Adapting to Climate Change in Reindeer Herding: The Nation-State as Problem and Solution.

    Get PDF
    This paper discusses the role of nation-states and their systems of gover- nance as sources of barriers and solutions to adaptation to climate change from the point of view of Saami reindeer herders. The Saami, inhabiting the northernmost areas of Fennoscandia, is one of more than twenty ethnic groups in the circumpolar Arctic that base their traditional living on reindeer herding. Climate change is likely to affect the Saami regions severely, with winter temperatures predicted to increase by up to 7 centigrade. We argue that the pastoral practices of the Saami herders are inherently better suited to handle huge natural variation in climatic con- ditions than most other cultures. Indeed, the core of their pastoral practices and herding knowledge is skillful adaptation to unusually frequent and rapid change and variability. This paper argues that the key to handle permanent changes successfully is that herders themselves have sufficient degrees of freedom to act. Considering the similarities in herding practices in the fours nation-states between which Saami culture is now divided . Norway, Sweden, Finland, and Russia . the systems of governance are surprisingly different. Indeed, the very definition of what is required to be defined as an ethnic Saami is very different in the three Nordic countries. We argue that timely adjust- ments modifying the structures of governance will be key to the survival of the Saami reindeer herding culture. Since the differences in governance regimes . and the need to change national governance structures . are so central to our argument, we spend some time tracing the origins of these systems.

    Comparing the temperatures of galaxy clusters from hydro-N-body simulations to Chandra and XMM-Newton observations

    Full text link
    Theoretical studies of the physical processes guiding the formation and evolution of galaxies and galaxy clusters in the X-ray are mainly based on the results of numerical hydrodynamical N-body simulations, which in turn are often directly compared to X-ray observations. Although trivial in principle, these comparisons are not always simple. We demonstrate that the projected spectroscopic temperature of thermally complex clusters obtained from X-ray observations is always lower than the emission-weighed temperature, which is widely used in the analysis of numerical simulations. We show that this temperature bias is mainly related to the fact that the emission-weighted temperature does not reflect the actual spectral properties of the observed source. This has important implications for the study of thermal structures in clusters, especially when strong temperature gradients, like shock fronts, are present. Because of this bias, in real observations shock fronts appear much weaker than what is predicted by emission-weighted temperature maps, and may even not be detected. This may explain why, although numerical simulations predict that shock fronts are a quite common feature in clusters of galaxies, to date there are very few observations of objects in which they are clearly seen. To fix this problem we propose a new formula, the spectroscopic-like temperature function, and show that, for temperature larger than 3 keV, it approximates the spectroscopic temperature better than few per cent, making simulations more directly comparable to observations.Comment: Submitted for publication in MNRAS; 15 pages, 10 color figures and 13 BW figures,mn2e.cls. High resolution figures available here: http://people.roma2.infn.it/~mazzotta/preprints/mazzotta.pd

    Persistent punishment : users views of short prison sentences

    Get PDF
    Semi-structured interviews were conducted of 22 prisoners to gather information about the characteristic features of short prison sentences. Themes raised in comments included: the frequency and quality of sentences, addiction, family, and penal legitimacy. Most of the participants had extensive experience of prison, and the effects of this played out across sentences and years, accumulating and amplifying impacts. And, despite expressions of guilt and remorse, most participants saw their sentence as unjust, and mainly a reaction to offending history. We conclude by suggesting the need for research to shift focus from evaluating individual penal interventions towards more holistic and narrative accounts that cut across sentences

    Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature

    Full text link
    We investigate systems of nature where the common physical processes diffusion and fragmentation compete. We derive a rate equation for the size distribution of fragments. The equation leads to a third order differential equation which we solve exactly in terms of Bessel functions. The stationary state is a universal Bessel distribution described by one parameter, which fits perfectly experimental data from two very different system of nature, namely, the distribution of ice crystal sizes from the Greenland ice sheet and the length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes
    • …
    corecore