54 research outputs found

    Opportunistic screening for atrial fibrillation by clinical pharmacists in UK general practice during the influenza vaccination season: a cross-sectional feasibility study

    Get PDF
    Background: Growing prevalence of atrial fibrillation (AF) in the ageing population, and its associated life-changing health and resource implications, have led to a need to improve its early detection. Primary care is an ideal place to screen for AF, however this is limited by shortages in general practitioner (GP) resources. Recent increases in the number of clinical pharmacists within primary care, makes them ideally placed to conduct AF screening. This study aimed to determine the feasibility of GP practice-based clinical pharmacists to screen the over 65s for AF, using digital technology and pulse palpation during the influenza vaccination season. Methods and Findings: Screening was conducted over two influenza vaccination seasons, 2017-2018 and 2018-2019 in four GP practices in Kent, UK. Pharmacists were trained by a cardiologist to pulse palpate, record and interpret a single-lead ECG (SLECG). Eligible persons aged ≥65 years, attending an influenza vaccination clinic were offered a free heart rhythm check. 604 participants were screened (median age 73 years, 42.7% male). Total prevalence of AF was 4.3%. All participants with AF qualified for anticoagulation and were more likely to be male (57.7%); older; have an increased BMI and have a CHA2DS2-VASc (Congestive heart failure, Hypertension, Age ≥ 75, Diabetes, previous Stroke, Age 65-74 years, Sex category) score ≥ 3. The sensitivity and specificity of clinical pharmacists diagnosing AF using pulse palpation was 76.9% [95% CI: 56.4-91.0] and 92.2% [89.7-94.3], respectively. This rose to 88.5% (69.9-97.6) and 97.2% [95.5-98.4] with a SLECG. At follow-up, four participants (0.7%) were diagnosed with new AF and 3 (0.5%) were initiated on anticoagulation. Screening with SLECG also helped identify new non-AF cardiovascular diagnoses, such as left ventricular hypertrophy, in 28 participants (4.6%). The screening strategy was cost-effective in 71.8% and 64.3% of the estimates for SLECG or pulse palpation, respectively. Feedback from participants (422/604) was generally positive. Key limitations of the study were that the intervention did not reach individuals who did not attend the practice for an influenza vaccination and there was a limited representation of UK ethnic minority groups in the study cohort. Conclusions: This study demonstrates that AF screening performed by GP practice-based pharmacists was feasible, economically viable and positively endorsed by participants. Furthermore, diagnosis of AF by the clinical pharmacist using a SLECG was more sensitive and more specific than the use of pulse palpation alone. Future research should explore the key barriers preventing the adoption of national screening programmes

    Characterisation and regulation of wild type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension

    Get PDF
    KEY POINTS SUMMARY The TASK-1 channel gene (KCNK3) has been identified as a possible disease-causing gene in heritable pulmonary arterial hypertension (PAH). In this study we show that novel mutated TASK-1 channels, seen in PAH patients, have a substantially reduced current compared to wild type TASK-1 channels. These mutated TASK-1 channels are located at the plasma membrane to the same degree as wild type TASK-1 channels. ONO-RS-082 and alkaline pH 8.4 both activate TASK-1 channels but do not recover current through mutant TASK-1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK-1 channels but does not recover current through mutant TASK-1 channels. ABSTRACT Pulmonary arterial hypertension (PAH) affects approximately 15-50 people per million. KCNK3, the gene that encodes the two pore domain potassium channel TASK-1 (K2P3.1), has been identified as a possible disease-causing gene in heritable PAH. Recently two new mutations have been identified in KCNK3, G106R and L214R, in PAH patients. The aim of this study is to characterise the functional properties and regulation of wildtype (WT) and mutated TASK-1 channels and understand how these might contribute to PAH and its treatment. Currents through WT and mutated human TASK-1 channels transiently expressed in tsA201 cells were measured using whole-cell patch-clamp electrophysiology. Localisation of fluorescently-tagged channels was visualised using confocal microscopy and quantified with in-cell and on-cell Westerns. G106R or L214R mutated channels were located at the plasma membrane to the same degree as WT channels, however their current was markedly reduced compared to WT TASK-1 channels. Functional current through these mutated channels could not be restored using activators of WT TASK-1 channels (pH 8.4, ONO-RS-082). The guanylate cyclase activator, riociguat, enhanced current through WT TASK-1 channels, however, like the other activators investigated, riociguat did not have any effect on current through mutated TASK-1 channels. Thus, novel mutations in TASK-1 seen in PAH, substantially alter the functional properties of these channels. Current through these channels could not be restored by activators of TASK-1 channels. Riociguat enhancement of current through TASK-1 channels could contribute to its therapeutic benefit in the treatment of PAH

    Screening for atrial fibrillation in care homes using pulse palpation and the AliveCor Kardia Mobile® device: a comparative cross-sectional pilot study.

    Get PDF
    Atrial fibrillation (AF) is a major cause of stroke in older people. Exacerbated by age and co-morbidities, residents of care homes are more likely to develop AF and less likely to receive oral anticoagulants. To determine the prevalence of AF using the design and methodology of the Pharmacists Detecting Atrial Fibrillation (PDAF) study in a care home setting. A cross-sectional AF screening pilot study within four UK care homes, three residential and one residential/nursing. Screening followed the original PDAF protocol: a manual pulse check, followed by a single-Lead ECG ( ECG, AliveCor Kardia Mobile (KMD)) delivered by a pharmacist. All recorded ECG were reviewed by a cardiologist and any residents requiring follow-up investigations were referred to their general practitioner. Fifty-three of 112 care home residents participated. From 52 ECGs recorded, the cardiologist interpreted 13.5% (7/52) as having possible AF of which 9.6% (5/52) were previously unknown. One resident with previously unknown AF received anticoagulation. This study has shown a need for AF screening in care homes and that elements of the PDAF screening protocol are transferable in this setting. Early diagnosis and treatment of AF are essential to reduce the risk of stroke in this population. [Abstract copyright: © 2023. The Author(s).

    The Concise Guide to PHARMACOLOGY 2023/24:Nuclear hormone receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p

    The Concise Guide to PHARMACOLOGY 2023/24:Nuclear hormone receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p

    Pharmacists detecting atrial fibrillation (PDAF) in primary care during the influenza vaccination season: a multisite, cross-sectional screening protocol

    Get PDF
    Introduction: Atrial fibrillation (AF) affects >6% of people aged 65 years or older. Left undetected and untreated, patients may develop significant cardiovascular complications and have a fivefold increased risk of suffering a stroke. For 40% of all sufferers, AF can be asymptomatic. Every year in the UK, £2.2 billion is spent on AF-related strokes, so there is an urgent need to improve early detection of AF. This study aims to determine the feasibility of using trained clinical pharmacists based in general practices, to screen for AF, using pulse palpation and a single-lead ECG device on participants aged 65 years or older, attending influenza vaccination clinics. Methods and analysis: Seven clinical pharmacists will be trained by a cardiologist to pulse palpate and record single-lead ECGs using the AliveCor Kardia Mobile device. Quantitative analysis will assess the accuracy and ability of the clinical pharmacist to identify pulse irregularities using pulse palpation and to record and interpret a singlelead ECG. The level of agreement of pulse irregularities detected by pulse palpation will be compared with those detected by the single-lead ECG device, as will the level of agreement between the cardiologist and the device’s interpretation of the ECG. The proportion of people identified with AF (confirmed by the cardiologist) will be determined. Additional demographic data will be obtained from all participants through a questionnaire. Qualitative data will be captured from the participants, from the clinical pharmacists and from the general practitioners and practice staff to determine their views on this method of AF screening. We aim to recruit 600 participants across general practices within Kent. Ethics and dissemination: This protocol was approved by the London–Riverside Research Ethics committee. The findings of this study will be disseminated through forums including, but not limited to, peer-reviewed journals, national and international conferences

    The Concise Guide to Pharmacology 2019/20: Ion Channels

    Get PDF
    The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14749. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22:Nuclear hormone receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15540. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein‐coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22:Transporters

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15543. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    The Concise Guide to PHARMACOLOGY 2023/24:Transporters

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p
    corecore