24 research outputs found
Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: a systematic review with meta-analysis
Background: Cerebral oxygenation monitoring utilising near-infrared spectroscopy (NIRS) is increasingly used to guide interventions in clinical care. The objective of this systematic review with meta-analysis and Trial Sequential Analysis is to evaluate the effects of clinical care with access to cerebral NIRS monitoring in children and adults versus care without.
Methods: This review conforms to PRISMA guidelines and was registered in PROSPERO (CRD42020202986). Methods are outlined in our protocol (doi: 10.1186/s13643-021-01660-2).
Results: Twenty-five randomised clinical trials were included (2606 participants). All trials were at a high risk of bias. Two trials assessed the effects of NIRS during neonatal intensive care, 13 during cardiac surgery, 9 during non-cardiac surgery and 1 during neurocritical care. Meta-analyses showed no significant difference for all-cause mortality (RR 0.75, 95% CI 0.51-1.10; 1489 participants; I2 = 0; 11 trials; very low certainty of evidence); moderate or severe, persistent cognitive or neurological deficit (RR 0.74, 95% CI 0.42-1.32; 1135 participants; I2 = 39.6; 9 trials; very low certainty of evidence); and serious adverse events (RR 0.82; 95% CI 0.67-1.01; 2132 participants; I2 = 68.4; 17 trials; very low certainty of evidence).
Conclusion: The evidence on the effects of clinical care with access to cerebral NIRS monitoring is very uncertain.
Impact: The evidence of the effects of cerebral NIRS versus no NIRS monitoring are very uncertain for mortality, neuroprotection, and serious adverse events. Additional trials to obtain sufficient information size, focusing on lowering bias risk, are required. The first attempt to systematically review randomised clinical trials with meta-analysis to evaluate the effects of cerebral NIRS monitoring by pooling data across various clinical settings. Despite pooling data across clinical settings, study interpretation was not substantially impacted by heterogeneity. We have insufficient evidence to support or reject the clinical use of cerebral NIRS monitoring
Cerebral oximetry monitoring versus usual care for extremely preterm infants: a study protocol for the 2-year follow-up of the SafeBoosC-III randomised clinical trial
Background: In the SafeBoosC-III trial, treatment guided by cerebral oximetry monitoring for the first 72 hours after birth did not reduce the incidence of death or severe brain injury in extremely preterm infants at 36 weeks' postmenstrual age, as compared with usual care. Despite an association between severe brain injury diagnosed in the neonatal period and later neurodevelopmental disability, this relationship is not always strong. The objective of the SafeBoosC-III follow-up study is to assess mortality, neurodevelopmental disability, or any harm in trial participants at 2 years of corrected age. One important challenge is the lack of funding for local costs for a trial-specific assessment.
Methods: Of the 1601 infants randomised in the SafeBoosC-III trial, 1276 infants were alive at 36 weeks' postmenstrual age and will potentially be available for the 2-year follow-up. Inclusion criteria will be enrollment in a neonatal intensive care unit taking part in the follow-up study and parental consent if required by local regulations. We aim to collect data from routine follow-up programmes between the ages of 18 and 30 months of corrected age. If no routine follow-up has been conducted, we will collect informal assessments from other health care records from the age of at least 12 months. A local co-investigator blinded to group allocation will classify outcomes based on these records. We will supplement this with parental questionnaires including the Parent Report of Children's Abilities-Revised. There will be two co-primary outcomes: the composite of death or moderate or severe neurodevelopmental disability and mean Bayley-III/IV cognitive score. We will use a 3-tier model for prioritisation, based on the quality of data. This approach has been chosen to minimise loss to follow-up assuming that little data is better than no data at all.
Discussion: Follow-up at the age of 2 years is important for intervention trials in the newborn period as only time can show real benefits and harms later in childhood. To decrease the risk of generalisation and data-driven biased conclusions, we present a detailed description of the methodology for the SafeBoosC-III follow-up study. As funding is limited, a pragmatic approach is necessary
The effects of cerebral oximetry in mechanically ventilated newborns: a protocol for the SafeBoosC-IIIv randomised clinical trial
Background
The SafeBoosC project aims to test the clinical value of non-invasive cerebral oximetry by near-infrared spectroscopy in newborn infants. The purpose is to establish whether cerebral oximetry can be used to save newborn infants’ lives and brains or not. Newborns contribute heavily to total childhood mortality and neonatal brain damage is the cause of a large part of handicaps such as cerebral palsy. The objective of the SafeBoosC-IIIv trial is to evaluate the benefits and harms of cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns.
Methods/design
SafeBoosC-IIIv is an investigator-initiated, multinational, randomised, pragmatic phase-III clinical trial. The inclusion criteria will be newborns with a gestational age more than 28 + 0 weeks, postnatal age less than 28 days, predicted to require mechanical ventilation for at least 24 h, and prior informed consent from the parents or deferred consent or absence of opt-out. The exclusion criteria will be no available cerebral oximeter, suspicion of or confirmed brain injury or disorder, or congenital heart disease likely to require surgery.
A total of 3000 participants will be randomised in 60 neonatal intensive care units from 16 countries, in a 1:1 allocation ratio to cerebral oximetry versus usual care. Participants in the cerebral oximetry group will undergo cerebral oximetry monitoring during mechanical ventilation in the neonatal intensive care unit for as long as deemed useful by the treating physician or until 28 days of life. The participants in the cerebral oximetry group will be treated according to the SafeBoosC treatment guideline. Participants in the usual care group will not receive cerebral oximetry and will receive usual care. We use two co-primary outcomes: (1) a composite of death from any cause or moderate to severe neurodevelopmental disability at 2 years of corrected age and (2) the non-verbal cognitive score of the Parent Report of Children’s Abilities-Revised (PARCA-R) at 2 years of corrected age.
Discussion
There is need for a randomised clinical trial to evaluate cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns.
Trial registration
The protocol is registered at www.clinicaltrials.gov (NCT05907317; registered 18 June 2023)
Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants:A protocol for the SafeBoosC randomised clinical phase III trial
Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants
Alternative consent methods used in the multinational, pragmatic, randomised clinical trial SafeBoosC-III
Background
The process of obtaining prior informed consent for experimental treatment does not fit well into the clinical reality of acute and intensive care. The therapeutic window of interventions is often short, which may reduce the validity of the consent and the rate of enrolled participants, to delay trial completion and reduce the external validity of the results. Deferred consent and ‘opt-out’ are alternative consent methods. The SafeBoosC-III trial was a randomised clinical trial investigating the benefits and harms of cerebral oximetry monitoring in extremely preterm infants during the first 3 days after birth, starting within the first 6 h after birth. Prior, deferred and opt-out consent were all allowed by protocol.
This study aimed to evaluate the use of different consent methods in the SafeBoosC-III trial, Furthermore, we aimed to describe and analyse concerns or complaints that arose during the first 6 months of trial conduct.
Methods
All 70 principal investigators were invited to join this descriptive ancillary study. Each principal investigator received a questionnaire on the use of consent methods in their centre during the SafeBoosC-III trial, including the possibility to describe any concerns related to the consent methods used during the first 6 months of the trial, as raised by the parents or the clinical staff.
Results
Data from 61 centres were available. In 43 centres, only prior informed consent was used: in seven, only deferred consent. No centres used the opt-out method only, but five centres used prior and deferred, five used prior, deferred and opt-out (all possibilities) and one used both deferred and opt-out. Six centres applied to use the opt-out method by their local research ethics committee but were denied using it. One centre applied to use deferred consent but was denied. There were only 23 registered concerns during the execution of the trial.
Conclusions
Consent by opt-out was allowed by the protocol in this multinational trial but only a few investigators opted for it and some research ethics boards did not accept its use. It is likely to need promotion by the clinical research community to unfold its potential
Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial.
BACKGROUND: Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants. METHODS/DESIGN: SafeBoosC III is an investigator-initiated, multinational, randomised, pragmatic phase III clinical trial. Inclusion criteria will be infants born below 28 weeks postmenstrual age and parental informed consent (unless the site is using 'opt-out' or deferred consent). Exclusion criteria will be no parental informed consent (or if 'opt-out' is used, lack of a record that clinical staff have explained the trial and the 'opt-out' consent process to parents and/or a record of the parents' decision to opt-out in the infant's clinical file); decision not to provide full life support; and no possibility to initiate cerebral NIRS oximetry within 6 h after birth. Participants will be randomised 1:1 into either the experimental or control group. Participants in the experimental group will be monitored during the first 72 h of life with a cerebral NIRS oximeter. Cerebral hypoxia will be treated according to an evidence-based treatment guideline. Participants in the control group will not undergo cerebral oxygenation monitoring and will receive treatment as usual. Each participant will be followed up at 36 weeks postmenstrual age. The primary outcome will be a composite of either death or severe brain injury detected on any of the serial cranial ultrasound scans that are routinely performed in these infants up to 36 weeks postmenstrual age. Severe brain injury will be assessed by a person blinded to group allocation. To detect a 22% relative risk difference between the experimental and control group, we intend to randomise a cohort of 1600 infants. DISCUSSION: Treatment guided by cerebral NIRS oximetry has the potential to decrease the risk of death or survival with severe brain injury in preterm infants. There is an urgent need to assess the clinical effects of NIRS monitoring among preterm neonates. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03770741. Registered 10 December 2018
Extremely Preterm Infant Admissions Within the SafeBoosC-III Consortium During the COVID-19 Lockdown
Objective: To evaluate if the number of admitted extremely preterm (EP) infants (born before 28 weeks of gestational age) differed in the neonatal intensive care units (NICUs) of the SafeBoosC-III consortium during the global lockdown when compared to the corresponding time period in 2019. Design: This is a retrospective, observational study. Forty-six out of 79 NICUs (58%) from 17 countries participated. Principal investigators were asked to report the following information: (1) Total number of EP infant admissions to their NICU in the 3 months where the lockdown restrictions were most rigorous during the first phase of the COVID-19 pandemic, (2) Similar EP infant admissions in the corresponding 3 months of 2019, (3) the level of local restrictions during the lockdown period, and (4) the local impact of the COVID-19 lockdown on the everyday life of a pregnant woman. Results: The number of EP infant admissions during the first wave of the COVID-19 pandemic was 428 compared to 457 in the corresponding 3 months in 2019 (−6.6%, 95% CI −18.2 to +7.1%, p = 0.33). There were no statistically significant differences within individual geographic regions and no significant association between the level of lockdown restrictions and difference in the number of EP infant admissions. A post-hoc analysis based on data from the 46 NICUs found a decrease of 10.3%in the total number of NICU admissions (n = 7,499 in 2020 vs. n = 8,362 in 2019). Conclusion: This ad hoc study did not confirm previous reports of a major reduction in the number of extremely pretermbirths during the first phase of the COVID-19 pandemic. Clinical Trial Registration: ClinicalTrial.gov, identifier: NCT04527601 (registered August 26, 2020), https://clinicaltrials.gov/ct2/show/NCT04527601
Extremely Preterm Infant Admissions Within the SafeBoosC-III Consortium During the COVID-19 Lockdown
Objective: To evaluate if the number of admitted extremely preterm (EP) infants (born before 28 weeks of gestational age) differed in the neonatal intensive care units (NICUs) of the SafeBoosC-III consortium during the global lockdown when compared to the corresponding time period in 2019. Design: This is a retrospective, observational study. Forty-six out of 79 NICUs (58%) from 17 countries participated. Principal investigators were asked to report the following information: (1) Total number of EP infant admissions to their NICU in the 3 months where the lockdown restrictions were most rigorous during the first phase of the COVID-19 pandemic, (2) Similar EP infant admissions in the corresponding 3 months of 2019, (3) the level of local restrictions during the lockdown period, and (4) the local impact of the COVID-19 lockdown on the everyday life of a pregnant woman. Results: The number of EP infant admissions during the first wave of the COVID-19 pandemic was 428 compared to 457 in the corresponding 3 months in 2019 (-6.6%, 95% CI -18.2 to +7.1%, p = 0.33). There were no statistically significant differences within individual geographic regions and no significant association between the level of lockdown restrictions and difference in the number of EP infant admissions. A post-hoc analysis based on data from the 46 NICUs found a decrease of 10.3%in the total number of NICU admissions (n = 7,499 in 2020 vs. n = 8,362 in 2019). Conclusion: This ad hoc study did not confirm previous reports of a major reduction in the number of extremely pretermbirths during the first phase of the COVID-19 pandemic. Clinical Trial Registration: ClinicalTrial.gov, identifier: NCT04527601 (registered August 26, 2020), https://clinicaltrials.gov/ct2/show/NCT04527601