9 research outputs found

    Discovery of ST1 centers in natural diamond

    Full text link
    The ST1 center is a point defect in diamond with bright fluorescence and a mechanism for optical spin initialization and readout. The center has impressive potential for applications in diamond quantum computing as a quantum bus to a register of nuclear spins. This is because it has an exceptionally high readout contrast and, unlike the well-known nitrogen-vacancy center, it does not have a ground state electronic spin that decoheres the nuclear spins. However, its chemical structure is unknown and there are large gaps in our understanding of its properties. We present the discovery of ST1 centers in natural diamond. Our experiments identify interesting power dependence of the center's optical dynamics and reveal new electronic structure. We also present a theory of its electron-phonon interactions, which we combine with previous experiments, to shortlist likely candidates for its chemical structure

    Qudi: a modular python suite for experiment control and data processing

    Get PDF
    Qudi is a general, modular, multi-operating system suite written in Python 3 for controlling laboratory experiments. It provides a structured environment by separating functionality into hardware abstraction, experiment logic and user interface layers. The core feature set comprises a graphical user interface, live data visualization, distributed execution over networks, rapid prototyping via Jupyter notebooks, configuration management, and data recording. Currently, the included modules are focused on confocal microscopy, quantum optics and quantum information experiments, but an expansion into other fields is possible and encouraged. Qudi is available from https://github.com/Ulm-IQO/qudi and is freely useable under the GNU General Public Licence.Comment: Software paper, 9 pages, 2 figure

    All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond

    Get PDF
    The silicon-vacancy (SiV−) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV− center with a spin relaxation time of T1=2.4±0.2  ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T⋆2=35±3  ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the Si29 isotope which allows access to nuclear spin. These results establish the SiV− center as a solid-state spin-photon interface.Physic

    Qudi: A modular python suite for experiment control and data processing

    No full text
    Qudi is a general, modular, multi-operating system suite written in Python 3 for controlling laboratory experiments. It provides a structured environment by separating functionality into hardware abstraction, experiment logic and user interface layers. The core feature set comprises a graphical user interface, live data visualization, distributed execution over networks, rapid prototyping via Jupyter notebooks, configuration management, and data recording. Currently, the included modules are focused on confocal microscopy, quantum optics and quantum information experiments, but an expansion into other fields is possible and encouraged. Keywords: Python 3, Qt, Experiment control, Automation, Measurement software, Framework, Modula
    corecore