7 research outputs found

    Paradoxical whole genome DNA methylation dynamics of 5’aza-deoxycytidine in chronic low-dose exposure in mice

    No full text
    Decitabine (5-aza-2ʹdeoxycytidine; DAC) is a DNA methyltransferase inhibitor used to hypomethylate the epigenome. Current dosing regimens of DAC for use in mice vary widely and their hypomethylating ability has not been robustly characterized, despite reliable results of hypomethylation of the epigenome with cell lines in vitro and tissue specificity in vivo. We investigated the effects on the DNA methylome and gene expression within mice exposed to chronic low doses of DAC ranging from 0 to 0.35 mg/kg over a period of 7 weeks without causing toxicity. Our dose paradigm resulted in no cytotoxic effects within target tissues, although testes weight and sperm concentration significantly reduced as dose increased (p-value <0.05). By whole genome bisulphite sequencing (WGBS), we identify tissue and dose-specific differentially methylated CpGs (DMCs) and regions (DMRs) in testes and liver. Testes methylation is more sensitive to DAC exposure when compared to liver, cortex, and hippocampus. Gene expression was dysregulated in testes and liver, targeting non-specific pathways as dose increases. Together our data suggest DNA methylation and gene expression are disrupted by in vivo DAC treatment in a non-uniform manner contrary to expectations, and that no dose level or regimen is sufficient to cause systemic hypomethylation in whole mice

    Evolutionary conservation of DNA methylation in CpG sites within ultraconserved noncoding elements

    No full text
    <p>Ultraconserved noncoding elements (UCNEs) constitute less than 1 Mb of vertebrate genomes and are impervious to accumulating mutations. About 4000 UCNEs exist in vertebrate genomes, each at least 200 nucleotides in length, sharing greater than 95% sequence identity between human and chicken. Despite extreme sequence conservation over 400 million years of vertebrate evolution, we show both ordered interspecies and within-species interindividual variation in DNA methylation in these regions. Here, we surveyed UCNEs with high CpG density in 56 species finding half to be intermediately methylated and the remaining near 0% or 100%. Intermediately methylated UCNEs displayed a greater range of methylation between mouse tissues. In a human population, most UCNEs showed greater variation than the LINE1 transposon, a frequently used epigenetic biomarker. Global methylation was found to be inversely correlated to hydroxymethylation across 60 vertebrates. Within UCNEs, DNA methylation is flexible, conserved between related species, and relaxed from the underlying sequence selection pressure, while remaining heritable through speciation.</p

    Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA

    No full text
    Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that associate with PIWI proteins for transposon silencing via DNA methylation and are highly expressed and extensively studied in the germline. Mature germline piRNAs typically consist of 24–32 nucleotides, with a strong preference for a 5ʹ uridine signature, an adenosine signature at position 10, and a 2ʹ-O-methylation signature at the 3ʹ end. piRNA presence in somatic tissues, however, is not well characterized and requires further systematic evaluation. In the current study, we identified piRNAs and associated machinery from mouse somatic tissues representing the three germ layers. piRNA specificity was improved by combining small RNA size selection, sodium periodate treatment enrichment for piRNA over other small RNA, and small RNA next-generation sequencing. We identify PIWIL1, PIWIL2, and PIWIL4 expression in brain, liver, kidney, and heart. Of note, somatic piRNAs are shorter in length and tissue-specific, with increased occurrence of unique piRNAs in hippocampus and liver, compared to the germline. Hippocampus contains 5,494 piRNA-like peaks, the highest expression among all tested somatic tissues, followed by cortex (1,963), kidney (580), and liver (406). The study identifies 26 piRNA sequence species and 40 piRNA locations exclusive to all examined somatic tissues. Although piRNA expression has long been considered exclusive to the germline, our results support that piRNAs are expressed in several somatic tissues that may influence piRNA functions in the soma. Once confirmed, the PIWI/piRNA system may serve as a potential tool for future research in epigenome editing to improve human health by manipulating DNA methylation

    Inhalation exposure to cigarette smoke and inflammatory agents induces epigenetic changes in the lung

    No full text
    Smoking-related lung tumors are characterized by profound epigenetic changes including scrambled patterns of DNA methylation, deregulated histone acetylation, altered gene expression levels, distorted microRNA profiles, and a global loss of cytosine hydroxymethylation marks. Here, we employed an enhanced version of bisulfite sequencing (RRBS/oxRRBS) followed by next generation sequencing to separately map DNA epigenetic marks 5-methyl-dC and 5-hydroxymethyl-dC in genomic DNA isolated from lungs of A/J mice exposed whole-body to environmental cigarette smoke for 10 weeks. Exposure to cigarette smoke significantly affected the patterns of cytosine methylation and hydroxymethylation in the lungs. Differentially hydroxymethylated regions were associated with inflammatory response/disease, organismal injury, and respiratory diseases and were involved in regulation of cellular development, function, growth, and proliferation. To identify epigenetic changes in the lung associated with exposure to tobacco carcinogens and inflammation, A/J mice were intranasally treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the inflammatory agent lipopolysaccharide (LPS), or both. NNK alone caused minimal epigenetic alterations, while exposure either to LPS or NNK/LPS in combination led to increased levels of global cytosine methylation and formylation, reduced cytosine hydroxymethylation, decreased histone acetylation, and altered expression levels of multiple genes. Our results suggest that inflammatory processes are responsible for epigenetic changes contributing to lung cancer development
    corecore