502 research outputs found

    Mixing-Demixing transition in 1D boson-fermion mixture at low fermion densities

    Full text link
    We numerically investigated the mixing-demixing transition of the boson-fermion mixture on a 1D lattice at an incommensurate filling with the fermion density being kept below the boson density. The phase diagram we obtained suggested that the decrease of the number of the fermions drove the system into the demixing phase

    Phase fluctuations in anisotropic Bose condensates: from cigars to rings

    Full text link
    We study the phase-fluctuating condensate regime of ultra-cold atoms trapped in a ring-shaped trap geometry, which has been realized in recent experiments. We first consider a simplified box geometry, in which we identify the conditions to create a state that is dominated by thermal phase-fluctuations, and then explore the experimental ring geometry. In both cases we demonstrate that the requirement for strong phase fluctuations can be expressed in terms of the total number of atoms and the geometric length scales of the trap only. For the ring-shaped trap we discuss the zero temperature limit in which a condensate is realized where the phase is fluctuating due to interactions and quantum fluctuations. We also address possible ways of detecting the phase fluctuating regime in ring condensates.Comment: 10 pages, 5 figures, minor edit

    Decoherence in an exactly solvable qubit model with initial qubit-environment correlations

    Full text link
    We study a model of dephasing (decoherence) in a two-state quantum system (qubit) coupled to a bath of harmonic oscillators. An exact analytic solution for the reduced dynamics of a two-state system in this model has been obtained previously for factorizing initial states of the combined system. We show that the model admits exact solutions for a large class of correlated initial states which are typical in the theory of quantum measurements. We derive exact expressions for the off-diagonal elements of the qubit density matrix, which hold for an arbitrary strength of coupling between the qubit and the bath. The influence of initial correlations on decoherence is considered for different bath spectral densities. Time behavior of the qubit entropy in the decoherence process is discussed.Comment: 10 pages, 5 figure

    Intrinsic Photoconductivity of Ultracold Fermions in Optical Lattices

    Full text link
    We report on the experimental observation of an analog to a persistent alternating photocurrent in an ultracold gas of fermionic atoms in an optical lattice. The dynamics is induced and sustained by an external harmonic confinement. While particles in the excited band exhibit long-lived oscillations with a momentum dependent frequency a strikingly different behavior is observed for holes in the lowest band. An initial fast collapse is followed by subsequent periodic revivals. Both observations are fully explained by mapping the system onto a nonlinear pendulum.Comment: 5+7 pages, 4+4 figure

    Critical velocity for a toroidal Bose-Einstein condensate flowing through a barrier

    Full text link
    We consider the setup employed in a recent experiment (Ramanathan et al 2011 Phys. Rev. Lett. 106 130401) devoted to the study of the instability of the superfluid flow of a toroidal Bose-Einstein condensate in presence of a repulsive optical barrier. Using the Gross-Pitaevskii mean-field equation, we observe, consistently with what we found in Piazza et al (2009 Phys. Rev. A 80 021601), that the superflow with one unit of angular momentum becomes unstable at a critical strength of the barrier, and decays through the mechanism of phase slippage performed by pairs of vortex-antivortex lines annihilating. While this picture qualitatively agrees with the experimental findings, the measured critical barrier height is not very well reproduced by the Gross-Pitaevskii equation, indicating that thermal fluctuations can play an important role (Mathey et al 2012 arXiv:1207.0501). As an alternative explanation of the discrepancy, we consider the effect of the finite resolution of the imaging system. At the critical point, the superfluid velocity in the vicinity of the obstacle is always of the order of the sound speed in that region, vbarr=clv_{\rm barr}=c_{\rm l}. In particular, in the hydrodynamic regime (not reached in the above experiment), the critical point is determined by applying the Landau criterion inside the barrier region. On the other hand, the Feynman critical velocity vfv_{\rm f} is much lower than the observed critical velocity. We argue that this is a general feature of the Gross-Pitaevskii equation, where we have vf=ϵ clv_{\rm f}=\epsilon\ c_{\rm l} with ϵ\epsilon being a small parameter of the model. Given these observations, the question still remains open about the nature of the superfluid instability.Comment: Extended versio

    Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat

    Get PDF
    Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children

    Neurofascin as a novel target for autoantibody-mediated axonal injury

    Get PDF
    Axonal injury is considered the major cause of disability in patients with multiple sclerosis (MS), but the underlying effector mechanisms are poorly understood. Starting with a proteomics-based approach, we identified neurofascin-specific autoantibodies in patients with MS. These autoantibodies recognize the native form of the extracellular domains of both neurofascin 186 (NF186), a neuronal protein concentrated in myelinated fibers at nodes of Ranvier, and NF155, the oligodendrocyte-specific isoform of neurofascin. Our in vitro studies with hippocampal slice cultures indicate that neurofascin antibodies inhibit axonal conduction in a complement-dependent manner. To evaluate whether circulating antineurofascin antibodies mediate a pathogenic effect in vivo, we cotransferred these antibodies with myelin oligodendrocyte glycoprotein–specific encephalitogenic T cells to mimic the inflammatory pathology of MS and breach the blood–brain barrier. In this animal model, antibodies to neurofascin selectively targeted nodes of Ranvier, resulting in deposition of complement, axonal injury, and disease exacerbation. Collectively, these results identify a novel mechanism of immune-mediated axonal injury that can contribute to axonal pathology in MS

    Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009

    Get PDF
    This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis
    • …
    corecore