5,115 research outputs found

    Data-Optimized Coronal Field Model: I. Proof of Concept

    Full text link
    Deriving the strength and direction of the three-dimensional (3D) magnetic field in the solar atmosphere is fundamental for understanding its dynamics. Volume information on the magnetic field mostly relies on coupling 3D reconstruction methods with photospheric and/or chromospheric surface vector magnetic fields. Infrared coronal polarimetry could provide additional information to better constrain magnetic field reconstructions. However, combining such data with reconstruction methods is challenging, e.g., because of the optical-thinness of the solar corona and the lack and limitations of stereoscopic polarimetry. To address these issues, we introduce the Data-Optimized Coronal Field Model (DOCFM) framework, a model-data fitting approach that combines a parametrized 3D generative model, e.g., a magnetic field extrapolation or a magnetohydrodynamic model, with forward modeling of coronal data. We test it with a parametrized flux rope insertion method and infrared coronal polarimetry where synthetic observations are created from a known "ground truth" physical state. We show that this framework allows us to accurately retrieve the ground truth 3D magnetic field of a set of force-free field solutions from the flux rope insertion method. In observational studies, the DOCFM will provide a means to force the solutions derived with different reconstruction methods to satisfy additional, common, coronal constraints. The DOCFM framework therefore opens new perspectives for the exploitation of coronal polarimetry in magnetic field reconstructions and for developing new techniques to more reliably infer the 3D magnetic fields that trigger solar flares and coronal mass ejections.Comment: 14 pages, 6 figures; Accepted for publication in Ap

    Irrotational binary neutron stars in quasiequilibrium

    Get PDF
    We report on numerical results from an independent formalism to describe the quasi-equilibrium structure of nonsynchronous binary neutron stars in general relativity. This is an important independent test of controversial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary can experience compression prior to the last stable circular orbit. We show that, for compact enough stars the interior density increases slightly as irrotational binary neutron stars approach their last orbits. The magnitude of the effect, however, is much smaller than that reported in previous hydrodynamic simulations.Comment: 4 pages, 2 figures, revtex, accepted for publication in Phys. Rev.

    Evolution of Hot Gas and Dark Halos in Group-Dominant Elliptical Galaxies: Influence of Cosmic Inflow

    Full text link
    We study the complete dynamical evolution of hot interstellar gas in massive elliptical galaxies born into a simple flat universe beginning with an overdense perturbation. Within the turn-around radius dark matter flows in a self-similar fashion into a stationary Navarro-Frenk-White halo and the baryonic gas shocks. After a few gigayears, when enough gas accumulates within the accretion shock, the de Vaucouleurs stellar system is constructed and the energy from Type II supernovae is released. The stars and dark halo are matched to NGC 4472. Gas continues to enter the galaxy by secondary infall and by stellar mass loss based on a Salpeter IMF. After about 13 Gyrs the temperature and density distribution in the hot gas agree quite well with the hot interstellar gas observed in NGC 4472. As a result of supernova-driven outflow, the present day baryonic fraction has a deep minimum in the outer galactic halo. When relatively gas-rich, X-ray luminous models are spatially truncated at early times, simulating tidal events that may have occurred during galaxy group dynamics, the current locus of truncated models lies just along the LxL_x, X-ray size correlation among well-observed ellipticals, providing another striking confirmation of our simple model of elliptical evolution.Comment: 16 pages in AASTEX LaTeX with 14 figures; accepted by Astrophysical Journa

    Revised Relativistic Hydrodynamical Model for Neutron-Star Binaries

    Full text link
    We report on numerical results from a revised hydrodynamic simulation of binary neutron-star orbits near merger. We find that the correction recently identified by Flanagan significantly reduces but does not eliminate the neutron-star compression effect. Although results of the revised simulations show that the compression is reduced for a given total orbital angular momentum, the inner most stable circular orbit moves to closer separation distances. At these closer orbits significant compression and even collapse is still possible prior to merger for a sufficiently soft EOS. The reduced compression in the corrected simulation is consistent with other recent studies of rigid irrotational binaries in quasiequilibrium in which the compression effect is observed to be small. Another significant effect of this correction is that the derived binary orbital frequencies are now in closer agreement with post-Newtonian expectations.Comment: Submitted to Phys. Rev.

    Structure of Strange Dwarfs with Color Superconducting Core

    Full text link
    We study effects of two-flavor color superconductivity on the structure of strange dwarfs, which are stellar objects with similar masses and radii with ordinary white dwarfs but stabilized by the strange quark matter core. We find that unpaired quark matter is a good approximation to the core of strange dwarfs.Comment: 8 pages 5 figures, J. Phys. G, accepte

    Possible explanation for star-crushing effect in binary neutron star simulations

    Get PDF
    A possible explanation is suggested for the controversial star-crushing effect seen in numerical simulations of inspiraling neutron star binaries by Wilson, Mathews and Marronetti (WMM). An apparently incorrect definition of momentum density in the momentum constraint equation used by WMM gives rise to a post-1-Newtonian error in the approximation scheme. We show by means of an analytic, post-1-Newtonian calculation that this error causes an increase of the stars' central densities which is of the order of several percent when the stars are separated by a few stellar radii, in agreement with what is seen in the simulations.Comment: 4 pages, 1 figure, uses revetx macros, minor revision

    Semi-analytical Solution of Dirac equation in Schwarzschild Geometry

    Get PDF
    Separation of the Dirac equation in the spacetime around a Kerr black hole into radial and angular coordinates was done by Chandrasekhar in 1976. In the present paper, we solve the radial equations in a Schwarzschild geometry semi-analytically using Wentzel-Kramers-Brillouin approximation (in short WKB) method. Among other things, we present analytical expression of the instantaneous reflection and transmission coefficients and the radial wave functions of the Dirac particles. Complete physical parameter space was divided into two parts depending on the height of the potential well and energy of the incoming waves. We show the general solution for these two regions. We also solve the equations by a Quantum Mechanical approach, in which the potential is approximated by a series of steps and found that these two solutions agree. We compare solutions of different initial parameters and show how the properties of the scattered wave depend on these parameters.Comment: RevTex, 11 Latex pages and 12 Figures ; Classical and Quantum Gravity (in Press) (1999

    Direct Signals for Large Extra Dimensions in the Production of Fermion Pairs at Linear Colliders

    Get PDF
    We analyze the potentiality of the new generation of e+ee^+e^- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e. e+effˉGe^+e^- \leftarrow f\bar{f}G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using full tree level contibutions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96(0.86) up to 4.1(3.3) TeV at 2(5)σ\sigma level, depending on the number of extra dimensions.Comment: 19 pages, 5 figures. Using RevTex, axodraw.sty. Discussion was extended. No changes in the results. Accepted for publication by Phys. Rev.

    Dissipative dynamics of vortex arrays in trapped Bose-condensed gases: neutron stars physics on μ\muK scale

    Full text link
    We develop a theory of dissipative dynamics of large vortex arrays in trapped Bose-condensed gases. We show that in a static trap the interaction of the vortex array with thermal excitations leads to a non-exponential decay of the vortex structure, and the characteristic lifetime depends on the initial density of vortices. Drawing an analogy with physics of pulsar glitches, we propose an experiment which employs the heating of the thermal cloud in the course of the decay of the vortex array as a tool for a non-destructive study of the vortex dynamics.Comment: 4 pages, revtex; revised versio
    corecore